数学联邦政治世界观
超小超大

三角函数 (2-1)

构造一个不是三角函数的f(x)和g(x)。简化一下问题,假设f(x)=f(0)=0,可得g(x+y)=g(x)g(y)。再设k(x)=ln(g(x)),有k(x+y)=k(x)+k(y)。如果能找到了一个k(x)的不连续解,g(x)=e^k(x)也不可能是连续的,从而不可能是三角函数。

设R是Q上的线性空间,因为739085^(1/2)是无理数,所以S={1,739085^(1/2)}在Q上是线性无关的。现在我们定义一个集合T={X|S⊆X,X中的元素在Q上线性无关},然后对T中的元素,用集合之间的⊆关系定义<关系,就给T中的元素建立了一个偏序关系。比如对M={1,739085^(1/2),√2}和N={1,739085^(1/2),π},我们有M,N∈T,其中S<M,S<N,但M和N之间互相没有包含关系,所以M和N之间不能比较大小,于是T不是一个全序集。但利用选择公理,我们可以在T中找到一个极大的全序子集。

我们给出一个单调递增的序列S_n(n∈N):

S₀=S

S_(n+1)=S_n∪{739085^(1/(n+2))}

然后可以取并集得到:

S_ω=∪S_n={1,739085^(1/2),739085^(1/3),......}

可以看出来,对每个n,都有S_ω>S_n。

然后在S_ω中再加一个元素得到S_(ω+1),并保证S_(ω+1)中的元素仍然是线性无关的,比如取2^(1/2)。接下来以此类推:

S_(ω+n+1)=S(ω+n)∪{2^(1/(n+2))}

再取并集可以得到:

S_(ω×2)=∪S_x(x<ω×2)

我们还可以继续下去,比如令S(ω×2+n+1)=S(ω×2+n)∪{π^(n+1)},然后又有S_(ω×3)=∪S_x(x<ω×3)等等。就这样一直往下增加元素,每个后继序数处随便选择一个能保证新得到的集合仍然在Q上线性无关的元素加入原来的集合,而极限序数处取之前所有更小集合的并集。直到某个S_α,加入R\S_α中的任何一个元素都会使新的集合在Q上线性相关了,我们就无法继续构造S_(α+1)了。于是S_α就是一个符合条件的T中的极大全序子集。

可以看出来,S_α就是R看成Q上的线性空间的一组基。对任意r∈R,我们都可以找出有限个S_α中的数c₀,c₁,c₂,......,c_n(n∈N),使得r=q₀c₀+q₁c₁+......+q_n*c_n,其中q₀,q₁,......,q_n是不全为0的有理数。这是因为如果存在一个r不能写成这样的组合,就必然需要在S_α中再加入至少一个元素d,得到一个更大的基H,r才能表示成H上的有理系数线性组合。于是H也是Q上的线性无关组,这和S_α是极大的线性无关组矛盾。

于是令k(1)=58和k(√739085)=42,对t∈S_α\{1,√739085},令k(t)=0。然后定义k(r)=q₀k(c₀)+q₁k(c₁)+......+q_n*k(c_n)。

设x=a₀b₀+a₁b₁+......+a_n*b_n

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

管理局的日常生活 连载中
管理局的日常生活
江无忌
0.8万字11个月前
凤帝威武,夫君个个都妖娆 连载中
凤帝威武,夫君个个都妖娆
李朵儿
(已签约/已完结)作为凤凰一族下一任的王,17万岁就升为上神的凤惜居然被自己的父亲一脚给踢到了下等大陆?这真是该死的尴尬,一身灵力消失不见,......
57.7万字11个月前
孟婆,请给我来碗汤 连载中
孟婆,请给我来碗汤
顾城柒少
孟婆的孟婆汤可以让人忘却前尘,包括美好的爱情月老的红线则是让有情终成眷属,至死不渝按理说,这两人应该毫无交集才对可是为什么在得知孟婆死讯的时......
30.7万字11个月前
铁血战士:寻找的旅途 连载中
铁血战士:寻找的旅途
本人嗑冷门cp
狼哥梦女短篇,有雷点请退出,不做改变。
1.8万字11个月前
快穿:棘手动人白玫瑰 连载中
快穿:棘手动人白玫瑰
嘎嘎一只
【一单元已完结】白娇娇成年后,在渎神星艰难求生的她得到了真神(bushi)怜惜,得到众人羡艳的sss级美人滤镜(也bushi)只是没想到,这......
4.5万字11个月前
爱上特种兵2(有点改动) 连载中
爱上特种兵2(有点改动)
TFBOYS是我的天使
0.8万字11个月前