现在,我们可以更抽象地考虑从范畴H到范畴C的任意一个函子p。根据上面的讨论,在这个语境下,我们则可以将H的任意一个物体S看作是相对于函子p的一个结构,或更确切地说是C范畴中的物体p(S)上的一个p-结构。因此,H可以看作是C上的p-结构所构成的范畴。令人惊讶的是,许多有关集合上某种特定结构的理论和构造可以被如上所述有关p-结构的一般理论所统一起来。我们可以在这个框架下定义子结构、商结构、自由结构、笛卡尔积、一族物体的和,或更为广泛的任意一个函子的极限和余极限,等等。目前我相信,现在的数学研究将会更少地关心单个p-结构的性质,甚至也不会那么关心某一个函子p的性质;相反,现在数学的目标应该是研究某一族函子的性质,使得曾经对于某一特定函子p和其对应的p-结构成立的定理,现在对于这一族中任意的函子都成立。一旦理解了这个定理有效的真正原因,我们一般会发现,只有很少的一些条件(假设)是证明这个定理所真正必要的。因此,原来定理的证明如今可以推广到一类非常广泛的函子上,而不仅仅只对原本的p函子适用。特别地,这个定理可能会包含许多已知的函子,从而应用于我们从未想过的领域。例如,有关拓扑空间的紧致化,均匀空间的完备化,自由群、自由模或更一般的由一个集合生成的自由代数的构造,都可以看作是某一类抽象的函子自由结构存在性定理的推论。
当然,上述对数学进行统一的方案过于粗略。事实上,只有数学家们的创造力才能持续地发现新的有趣的函子类。如我们所见,在数学中,创造过程的一个特点是把以前定义的一类对象作为一个新的数学对象来加以认识。当我们开始研究不同函子的分类及其性质来梳理统一现有的数学理论时,我们是否在这个更高的层次面临着相同的问题?一旦这个新理论走向成熟且再次变得复杂、纠缠不清,我们是否有必要发展更高程度的统一理论?我们不试图回答这个问题。然而,我们愈发深刻地认识到,数学是一个永不会完成的创造过程,它的存在性并不需要通过它的重要性或是不断扩大的应用范围来证明;它的意义远远不仅是充当“物理学的推土机”。数学是理解整个宇宙的关键,统一了人类从科学到哲学到形而上学的所有的思维。因此,柏拉图和莱布尼茨的伟大理想,即让数学成为一切知识本质的理想,可能终将实现。
注释:
[1] 亨利·柏格森 (Henri Bergson, 1859-1941),法国哲学家,文学家,于1927年凭借丰富、富有活力的思想和语言获得诺贝尔文学奖。
[2] 欧多克索斯(Eudoxus,408 B.C.–355 B.C. ),古希腊数学家、天文学家,欧几里得《几何原本》中的许多内容很有可能是来源于欧多克索斯,一些人认为他是古希腊最杰出的数学家。
[3] 里查德·戴得金(Richard Dedekind,1831-1916),德国数学家,在数论、抽象代数(特别是环论)以及算数的公理化等领域作出非常重要的贡献。
[4] 弗朗索瓦·韦达(François Viète,1540-1603),法国数学家,初高中生们熟悉的韦达定理就来源于他。
[5] 通用表意文字 (拉丁语为characteristica universalis),是莱布尼茨所设想的一种通用的形式化语言,该语言能够表达数学、科学以及形而上学等方面的概念,并支持一种通用的逻辑演算。
[6] 尼古拉·罗巴切夫斯基(Nikolai Lobachevsky,1792-1856 ),俄国数学家;鲍耶·亚诺什(János Bolyai, 1802-1860),匈牙利数学家,他们和高斯生活在同一时代。两人均独立的为非欧几何,特别是双曲几何,作出了重要贡献。
数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。