数学联邦政治世界观
超小超大

【概率论】中心极限定理 (7-1)

目录

1.切比雪夫不等式 ▹

1.1示性函数 ▹

1.2 马尔可夫不等式 ▹

1.3 切比雪夫不等式 ▹

2.大数定律 ▹

2.1 马尔可夫大数定律 ▹

2.2 切比雪夫大数定律 ▹

2.3独立同分布大数定律 ▹

2.4伯努利大数定律 ▹

2.5辛钦大数定律 ▹

3.中心极限定理 ▹

3.1林德贝格-勒维/独立同分布中心极限定理 ▹

3.2 棣莫弗-拉普拉斯/二项分布中心极限定理 ▹

*3.3独立不同分布下的中心极限定理 ▹

林德伯格中心极限定理 ▹

李雅普诺夫Lyapunov中心极限定理 ▹

学习阶段:大学数学。

前置知识:微积分、随机变量、数学期望、方差。

1. 切比雪夫不等式

切比雪夫不等式可以对随机变量偏离期望值的概率做出估计,这是大数定律的推理基础。

以下介绍一个对切比雪夫不等式的直观证明。

1.1 示性函数

对于随机事件A,我们引入一个示性函数

1, A

lᴀ={

0, A

,即一次试验中,若A发生了,则 l 的值为1,否则为0.

现在思考一个问题:这个函数的自变量是什么?

我们知道,随机事件在做一次试验后有一个确定的观察结果,称这个观察结果为样本点 ω ,所有可能的样本点的集合称为样本空间 Ω={ω} . 称 Ω 的一个子集 A 为随机事件。

例如,掷一个六面骰子,记得到数字k的样本点为ωₖ ,则 Ω={ω₁,ω₂,ω₃,ω₄,ω₅,ω₆} ,随机事件“得到的数字为偶数”为 A={ω₂,ω₄,ω₆} .

由此可知,示性函数是关于样本点的函数,即

1, ω∈A

lᴀ(ω)={ (试验后)

0, ω∉A

在试验之前,我们能获得哪个样本点也未知的,因此样本点也是个随机事件,记为ξ ,相应地示性函数可以记为

1, ξ∈A

lᴀ={ (试验前)

0, ξ∉A

在试验之前,l 值也是未知的,因此 l 是个二值随机变量。这样,我们就建立了随机事件A和随机变量 l 之间的一一对应关系。

对l 求数学期望可得

𝔼lᴀ=1 × P(ξ∈A)+0 × P(ξ∉A)=P(ξ∈A)

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

维度断裂 连载中
维度断裂
基尼奇的狗汪汪啊
作者什么都不会写,更新是不定时的可以加作者的快手号:鱼子酱不吃鱼。头像是基尼奇不会改的
0.0万字1个月前
诱染 连载中
诱染
岁岁也安
双男主,1v1,穿入游戏,生存“圣主,从今往后,我便是您的人了。”
1.2万字1个月前
三生三世颜翮劫 连载中
三生三世颜翮劫
浮生琐
八荒六合唯一的女战神,这个名号,我其实并不喜欢。多年前——我曾站在云巅上……对着玉盘,向着远方,双手合十:“愿来生的我们,不再有恨。”也许,......
14.0万字1个月前
京剧猫之风雨之间 连载中
京剧猫之风雨之间
白艳
我第一次写,写的不好,见谅。
0.7万字1个月前
异梦之界 连载中
异梦之界
闻不见此人
当一位资深学历的高材生遇到自己都解决不了的问题,该怎么办?“糟糕!我喜欢的人给我递情书了怎么办!我可不会写情书啊!”*意外的大陆历经漫长岁月......
68.2万字1个月前
矢渝无偿封面铺(不接暂关) 连载中
矢渝无偿封面铺(不接暂关)
纪榆_
以下是无偿要求↓封面要求关注大号海棠蚀_,收藏《快穿:满级大佬她又在虐渣》,快穿那里付120朵花花。横封+40朵花花,未完待续80朵花花,立......
0.1万字1个月前