数学联邦政治世界观
超小超大

贝特朗悖论

The Bertrand Paradox

在一个圆中随机画一条弦,这条弦的长度超过该圆内切等边三角形一边的概率是多少?

至少有三种不同的方法会导致不同的答案:

1. 随机端点法:在圆的周长上随机选择两点形成一个弦,这条弦长度超过三角形一边的概率是1/3。

2. 随机半径点法:选择半径上的一个点并画一个垂直弦,这条弦长度超过三角形一边的概率是1/2。

3. 随机中点法:在圆内随机选择一个点作为弦的中点,这条弦长度超过三角形一边的概率是1/4。

贝特朗悖论由法国数学家约瑟夫·贝特朗于1889年提出。这个问题看起来简单,但答案可因随机选择弦的方式不同而有不同的解释。贝特朗悖论是涉及几何概率问题的经典悖论。不要与“贝特朗盒悖论”混淆,尽管它们都是以同一位数学家的名字命名的。后者是由推理中的常见谬误导致的。

破解

这是由无穷性引起的悖论。

设每单位长度上有n个点。

使用随机端点法,圆周上有2πrn个点。所以,抽样就是从2πrn个点中选择2个点。

使用随机半径点法,直径上有2rn个点。直径上的每个点对应于弦的两个端点。所以,抽样是从4rn个点中选择2个点。

使用随机中点法,圆的面积内有πr2n个点。面积内的每个点对应于弦的两个端点。所以,抽样是从πr2n个点中选择2个点。

如下所示,如果我们假设半径上的点按长度均匀分布,邻近的边缘(圆周上的点)不按长度均匀分布,面积内的点也不按面积均匀分布。

1、2、3

a、b、c

i、ii、iii

当长度(a)=长度(b)=长度(c)时,

长度(i)<长度(ii)<长度(iii),并且

面积(1)>面积(2)>面积(3)。

同样地,如果我们假设圆周上的点是均匀分布的,那么半径上或面积内的点则不是。并且,如果我们假设面积内的点是均匀分布的,那么半径上或圆周上的点则不是。当点的分布不均匀时,画出随机的弦是不可能的。因此,假设这3种抽样方法都是随机的是错误的。

那些支持存在矛盾的人错误地认为无穷大和无穷小是数字,以至于三者之中没有一个拥有比其他两个更多或更少的点。然而,我们需要对无穷小有一个恰当的定义。无穷小不是一个数字,而是一个未知数字的属性。因此,如果我们假设每单位长度的最小刻度是(m),它具有无穷小的属性,那么每一种抽样的抽样总体都是有限的。假设一种方法是随机的将使另外两种非随机。随机性应该根据抽样方法来定义。只有当每个样本被抽样的概率相同时,我们才可以说抽样是随机的。

因此,只要我们正确理解无穷和随机抽样的本质,我们就可以解决这个悖论。

摘自专栏《悖论》

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

四叶草之国 连载中
四叶草之国
知楠楠
承接上一部四叶草五传的剧情,这次的剧情是四叶草五传前往四叶草之国找到了黑暗势力的来源并将其打败的故事
5.0万字1年前
灵异档案室 连载中
灵异档案室
京墨蓝鸢
【悬疑灵异+无言情群像+解谜】
0.8万字1年前
他说北方有神鹿 连载中
他说北方有神鹿
厌色鹿鸣
【群像】谁苍白了我的等待,讽刺了我的执着。世人皆知四大雅:颜君抱花,公子斩妖,女帝弃剑,云鹤降世。却不知的是:颜君抱花,太子心动,却终是一出......
23.9万字1年前
无往游戏 连载中
无往游戏
陨倾
时冉死后进入规则怪谈世界,还遇见了早已逝世的父母,死后的人无法进入轮回而是进入怪谈世界?那自己死了有什么意义?!
0.5万字1年前
邻居不是人 连载中
邻居不是人
任新雨
池园有了新的邻居,长得好看,说话也好听!只是……莫西:我之前的邻居因为看见了我洗澡,所以我才搬家的。池园:就只因为看见了洗澡吗?莫西:也不全......
10.6万字1年前
PIC当铺 连载中
PIC当铺
EveAK
放图的。
0.1万字1年前