数学联邦政治世界观
超小超大

Woodin对Reinhardt Cardinals与ZFC (3-2)

由于j的定义域是全部V, 所以j必然地会是一个proper class, 所以关于j的命题都无法从字面意思上在ZFC里表达出来. 在其他大基数的情况下, "存在elementary embedding j:V → M "这个二阶claim都有等价的一阶formulation, 比如可测基数的情况下, 这个claim等价于"存在一个基数 κ , 使得 κ 上存在一个nonprincipal κ-complete ultrafilter".

我们下面证明"nontrivial elementary embedding j:V → V 不存在"这个claim不存在等价的一阶formulation.

proof: 假设Reinhardt cardinal存在, 令κ 为最小的Reinhardt cardinal, 并且假设这个j是first-order definable的, 那么 j(κ) 也是first-order definable的. 此时因为 κ∈V 根据elementary embedding的定义我们有:V├ κ is the least Reinhardt cardinal ⇔ V├ j(κ) is the least Reinhardt cardinal. 但是根据定义, j(κ)>κ,得到矛盾. ⊣

所以为了能表述“非平凡初等嵌入j:V → V不存在. "这个命题,我们转移阵地到能表达二阶概念的集合论,GBC(哥德尔-伯奈斯集合论与选择)。

同时,我们留意到“j是初等的”有一个等价的一阶配方,这个结果由盖夫曼证明:

事实(盖夫曼):如果j:N → M是一个σ₁-elementary嵌入(意思是j只保证两个模型间的 Σ₁ 语句真值相同。

Σ₁ 语句的真值是一阶可定义的),N与M都满足ZF,那么j就是一个初等嵌入。

所以我们所需要证明的命题如下: (GBC) "不存在一个Σ₁-elementary embedding j:V → V ." 等价地, 我们证明, "如果 j:V → M 是 Σ₁-elementary embedding, 那么 M ≠ V "

证明:

令κ=crit(j) , 我们考虑如下序列:(κ,j(κ),j(j(κ)),. . .jⁿ(κ),jⁿ⁺¹(κ). . .) . 令 λ=supₙ<ωjⁿ(κ) . λ⁺ 是一个后继基数, 所以在选择公理下 λ⁺ 是一个不可数的正则基数.

所以根据Solovay splitting, 我们可以找到函数 S:κ → P(λ⁺),使得 range(S) 是对 W={ζ<λ⁺│cf(ζ)=ω}的一个partition, 其中每一个集合都是 λ⁺ 中的驻集.

我们留意到 j(λ)=λ : 因为j(λ)=j(supₙ<ωjⁿ(κ))=supₙ<ω(j(jⁿ(κ)))=λ .

此时注意:λ⁺ ≤ j(λ⁺)=(λ⁺)ᴹ ≤ λ⁺ (中间的等号是因为j是elementary embedding). 所以 j(λ⁺)=λ⁺ .

我们将用反证法证明命题. 我们现在假设M=V , 并最终导出矛盾.

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

持枪地质学家 连载中
持枪地质学家
吴索味
【自用预警】你有想过一个问题吗?如果一个有着绝对力量的凶手杀了你的全家,并且给你留下了很深重的阴影,法律却判它无罪。如果你选择报仇,玉石俱焚......
4.5万字9个月前
幻——祁夜 连载中
幻——祁夜
1414086
西幻文
0.1万字8个月前
无限逃生:玩家每天都在花式作死 连载中
无限逃生:玩家每天都在花式作死
南陌无衣
来番茄看看'作者新书无限流,笔名临河三千斯文败类双标非人马甲多多守夜人谢戾大BOSSx一心求死清奇脑回路不服就干孤寡好勇一女的玩家风枕眠❤️......
36.5万字8个月前
ch综艺体?! 连载中
ch综艺体?!
客醉倚河桥,清光愁玉箫
等我更文(可能有cp出现?)
0.0万字8个月前
废材公主:夫君多多追着跑 连载中
废材公主:夫君多多追着跑
富婆当道
意外穿越,慕凌月成为了当朝唯一的公主。可世人皆知,慕凌月此女相貌丑陋,痴傻无脑,实乃皇家一大笑话。对此,慕凌月置之惘然,该吃吃该喝喝,顺便打......
5.0万字8个月前
七色堇之断肠海棠 连载中
七色堇之断肠海棠
安风and月见
签约作品,已完结
61.0万字8个月前