数学联邦政治世界观
超小超大

Woodin对Reinhardt Cardinals与ZFC (3-1)

Woodin对Reinhardt Cardinals与ZFC不相容的证明

Stationary Splitting(special case):令λ 为不可数的正则基数(regular cardinal), 则对于任意的正则基数 κ ≤ λ 都存在一个函数 S:κ → P(λ) 使得 range(S) 是一个对 {ζ<λ│cf(ζ)=ω} 的partition, 特别的, range(S) 中每一个元素都是驻集.

cf(x)指的是x的共尾性(cofinality).

Elementary embedding: 令N, M为某语言L的模型, 我们说j:N → M 是一个(nontrivial) elementary embedding, 当且仅当, 对于任意的L-formula φ(υ₁,. . .,υₙ) 和 α₁,. . .,αₙ ∈ N,N╞ φ[α₁,. . .,αₙ] ⇔ M╞ φ[j(α₁),. . .,j(αₙ)].

例如:假设measurable cardinal存在, 那么存在一个nontrivial elementary embedding j:V → M .

假设存在一个nontrivial elementary embedding j:V → M , 那么第一个被j移动的的序数(写作crit(j), the critical point of j)是一个measurable cardinal.

我们可以要求模型M越来越像V, (比如在可测基数的情况里,Vκ₊₂ ⊈ M, 所以M就没有特别像V), 来得到各种各样的 j:V → M,其中crit(j)就是可测基数之上的各种基数 (例如要求 Vᵧ ⊆ M , crit(j)就是 γ-strong cardinal).

自然的, 我们可以考虑"终极"的"像V性质", 即M=V. 这个可能性由Reinhardt提出, 若(nontrivial) elementary embedding j:V → V 存在, 那么crit(j)就叫做Reinhardt cardinal.

在这个可能性提出后不久, Kunen就证明了著名的Kunen Inconsistency: 假设选择公理, 那么如果 j:V → M 是一个nontrivial elementary embedding, 那么 V ≠ M.

目前我们尚不知道这个定理在没有选择公理的情况下成不成立.

Reinhardt cardinals在ZF下的存在性问题是当下集合论和数学哲学中的一个至关重要的open problem.

本文我们将证明如下(用自然语言写下的)命题: "nontrivial elementary embedding j:V → V 不存在. "

在证明这个命题前, 我们先考虑我们需要证明的是什么.

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

穿越仙域:闺蜜成双,爱遇良人 连载中
穿越仙域:闺蜜成双,爱遇良人
素烟灵
0.9万字1个月前
银河封神纪(另篇) 连载中
银河封神纪(另篇)
飞哥与神之进
作者简介……懒
0.1万字1个月前
诡童话之若即若离 连载中
诡童话之若即若离
郭明宇
玩家扮演童话角色,但有一点,不许相信任何人
5.9万字1个月前
盛世精灵:十岁妖妃吊炸天 连载中
盛世精灵:十岁妖妃吊炸天
洛惊鸿
『温酒阁』“许你一壶温酒,余生惊艳众人”——————————桃吱工作室「桃子汽水,夏季预定」支持隔壁:《焉栩嘉:丧尸小姐很佛系》初见,她一脸......
34.6万字1个月前
霍斩疾之回归 连载中
霍斩疾之回归
霍斩疾浩桐之子
0.2万字1个月前
长相思:青丝篇 连载中
长相思:青丝篇
林不烦
签约作品,不可盗,被看见盗我作品者,鱼死网破
12.6万字1个月前