数学联邦政治世界观
超小超大

马尔科夫不等式和切比雪夫不等式 (2-1)

概率论中有很实经典的不等式,其中最著名的两个当属由两位俄国数学家马尔科夫和切比雪夫分别提出的马尔科夫 (Markov) 不等式和切比雪夫 (Chebyshev) 不等式.

马尔科夫 (Markov) 不等式

马尔科夫不等式的形式如下: 设 X 为一个非负随机变量,其数学期望为 E(Ⅹ),则对任意 ε>0 ,均有

E(X)

P(X ≥ ε) ≤ ───

ε

马尔科夫不等式给出了随机变量取值不小于某正数的概率上界,阐释了随机变量尾部取值概率与其数学期望间的关系.

证明: 当 X 为非负离散型随机变量时,设 X 的分布列为 P(X=xᵢ)=pᵢ,i=1,2,· · ·,n, 其中 pᵢ∈(0,+∞),

xᵢ∈[0,+∞)(i=1,2,· · ·,n),

∑pᵢ=1,则对任意 ε>0,

ᵢ₌₁

xᵢ 1

P(X≥ε)=∑ pᵢ ≤ ∑ ─ pᵢ=─

xᵢ≥ε xᵢ≥ε ε ε

1 ₙ E(X)

∑ xᵢpᵢ ≤ ─ ∑xᵢpᵢ=───

xᵢ≥E ε ᵢ₌₁ ε

其中符号

∑Aᵢ

xᵢ≥E

表示对所有满足 xᵢ≥ε 的指标 i 所对应的 Aᵢ 求和.

切比雪夫(Chebyshev)不等式

切比雪夫不等式的形式如下: 设随机变量 X 的期望为 E(X) ,方差为 D(X) ,则对任意 ε>0 ,均有

D(X)

P(|X – E(X)| ≥ ε) ≤ ──

ε²

证明:(1) 法一: 对非负离散型随机变量 [X – E(X)]² 及正数ε²使用马尔科夫不等式,有

P(|X – E(X)| ≥ ε)=P([X – E(X)]² ≥ ε²)

E[X – E(X)]² D(X)

≤ ─────=───

ε² ε²

法二:设X 的分布列为

P(X=xᵢ)=pᵢ,i=1,2,· · ·,n,

其中pᵢ,xᵢ∈(0,+∞)(i=1,2,· · ·,n),

∑pᵢ=1

ᵢ₌₁

,记 μ=E(X) ,则对任意 ε>0 ,

(xᵢ – μ)² 1

P(|Ⅹ – μ| ≥ ε)=∑ Pᵢ ≤ ∑ ─── Pᵢ=─

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

万人迷被强制爱的日常 连载中
万人迷被强制爱的日常
惟玉
【究极玛丽苏】+【绝美万人迷】+【狗血强制爱文学】+【清冷美人】起初,001只是不忍她消散而已,后来,它也没想到自己随手绑定的宿主竟然成了整......
26.4万字1年前
三生三世白九九 连载中
三生三世白九九
酒煮笙茶
白九九思慕,四海八荒第一美男子,白真上神。可是,为什么最后嫁的是东华帝君?这是个问题!你搞错对象了吧?——白九九
2.8万字1年前
使命至上 连载中
使命至上
鬼间
闷骚敬业vs傲娇美人,架空,不喜勿喷祁某:关于我去和他做搭档这件事,局长我劝你慎重考虑!大师:我不想帮忙的……可是他有腹肌诶!世界观:邪神降......
1.3万字1年前
深情入你心 连载中
深情入你心
青青子衿?%
李栀以为姜家家,就老公一个儿子,没有姑子,姐姐那些麻烦事,也没有公公婆婆偏心,大伯哥,小叔子的事,没想到,没有这些,却有别的,且看她怼天,怼......
14.6万字1年前
四维:无主之地 连载中
四维:无主之地
凌墨双
男孩卡迪和妹妹,妈妈相依为命。但是在11岁那年,妈妈前往四维世界调查时,突然失踪,他和妹妹一同前去寻找妈妈,却被告知妹妹不是人类。为了找到妈......
1.2万字1年前
杀死夏天 连载中
杀死夏天
予安Netia
我只想好好的过完一生......
0.0万字1年前