数学联邦政治世界观
超小超大

力迫

我们向集合论语言 Ը 中加入一个新常元 G 得到语言 Ը' ,令 p 是一个特征函数,其中 dom(p) ⊂ ω ∧ |p|<ω,且对于任意 i∈dom(p) ,都有 p(i)=1∨p(i)=0。

规定力迫关系:对于任意不含 G 的公式 ф ,M╞ ф ⇔ p ⊩ ф;

p(x)=1 ⇔ p ⊩ G(x)=1;

p ⊩ ψ ∧ ф ⇔ p ⊩ ψ ∧ p ⊩ ф;

p ⊩ ¬ψ ⇔ ∀q ⊇ p,q ⊮ ψ;

p ⊩ ∃xψ ⇔ ∃x,p ⊩ ψ(x) 。

注意我们的初始逻辑符号没有析取、蕴含和全称量词。

根据力迫关系的定义,不难证明如下引理成立:

引理1:q ⊇ p → (p ⊩ ψ → q ⊩ ψ)。

引理2:p ⊮ ψ ∧ ¬ψ。

引理3:如果 p ⊮ ψ ,那么存在 q ⊇ p 满足 q ⊩ ¬ψ¬ψ。

证明:对公式递归即可。

我们称引入的常元G 对应的集合是generic,当且仅当对于任意 Ը' 公式 ф , G ⊩ ф 或者 G ⊩ ¬ψ,其中 G ⊩ ф ⇔ ∃p ⊂ G,p ⊩ ф 。

定理:对于任意p ∈ P,存在generic的 G ⊃ p 。

证明:令ф₁,ф₂,· · · 是 Ը' 的一个枚举,根据引理 3 可得如果 p ⊮ ф₁ ,那么存在 q ⊃ p 满足 q ⊩ ¬ф₁,令 q=p₁ ,那么递归可得 p₁,p₂,· · · 最后令 G=∪pᵢ 即可ᵢ∈ω,不难验证 G ⊩ ф 或者 G ⊩ ¬ф 。

此时的G 是一个 ω 的函数,那么这是一个什么样的函数呢?

引理4:G ⊩ G is infinity 。

证明:用反证法。

假设存在p ⊂ G ,p ⊩ ∃n ∈ ω∀x(G(x)=1 → x ≤ n),那么 p ⊩ ∀x(G(x)=1 → x ≤ n) ,根据力迫关系可得不存在 q ⊃ p 满足 q ⊩ ∃x(G(x)=1∧x ≥ n)。

由于 p 的定义域有上界,不妨设 dom(p)∪n ⊂ i,那么 q=p∪{〈i,1〉} ⊩ G(i)=1∧n∈i,矛盾,反证引理 4 成立。

引理5: G 力迫“G 的任意算术子集都是有穷的”。

证明:令ψ(x) 定义了 G 的算术子集 A ,那么存在 p ⊂ G 满足 p ⊩ ∀x(ψ(x) → x∈G),由于 p 的定义域有限,因此只有有限个 x∈ω 满足 p ⊩ x∈G,这蕴含只有有限个 x 满足 p ⊩ ψ(x) ,因此 p 力迫“ A 是有穷集合”, G 也力迫“ A 是有穷集合”,引理 5 得证。

推论1: G 不是算术子集。

证明:由引理4,5 可得。

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

仙门师妹组团修仙 连载中
仙门师妹组团修仙
幕雪666
出生家族被灭门的宁雪棠:怎么办。被万蛊楼的楼主捡到带回楼里三岁成为圣女。在10岁明白真相,控制万蛊楼,自此楼内众人分分畏惧。一次失误,流落下......
3.5万字8个月前
奇眠者 连载中
奇眠者
原野稳
写步临笺发现学校里的人一个一个的都失踪了,而他们的父母都没有他们的记忆,直到轮到自己也消失了,她发现自己被困在梦境里。无法走出来,有一天遇到......
1.3万字8个月前
穿越——血族禁域? 连载中
穿越——血族禁域?
塔娅·雪莱
封面是我自己做的,做的不好,所以不要嫌弃啊~男主们未定,读者宝宝选,其他的,就让男主们自己撕逼去吧男主:……以上来自一个宠粉作者٩(*´◒`......
4.1万字8个月前
穿越大佬玩嗨了 连载中
穿越大佬玩嗨了
总想着吃肉
大佬神肆羽被系统零绑定了,本应是施号者的系统沦为小弟。三千世界,本应埋头苦干却被大佬排着队玩。时不时再吸引个俊美男人。从此,生活除了玩,更有......
0.8万字8个月前
相遇之梧桐遇雨 连载中
相遇之梧桐遇雨
天冰skyice
“梧桐”遇到了“雨”,他们会发生什么事呢?
6.0万字8个月前
综:师妹她又在钓鱼 连载中
综:师妹她又在钓鱼
赵赵今天又拖更了吗
滴:
4.4万字8个月前