数学联邦政治世界观
超小超大

力迫

我们向集合论语言 Ը 中加入一个新常元 G 得到语言 Ը' ,令 p 是一个特征函数,其中 dom(p) ⊂ ω ∧ |p|<ω,且对于任意 i∈dom(p) ,都有 p(i)=1∨p(i)=0。

规定力迫关系:对于任意不含 G 的公式 ф ,M╞ ф ⇔ p ⊩ ф;

p(x)=1 ⇔ p ⊩ G(x)=1;

p ⊩ ψ ∧ ф ⇔ p ⊩ ψ ∧ p ⊩ ф;

p ⊩ ¬ψ ⇔ ∀q ⊇ p,q ⊮ ψ;

p ⊩ ∃xψ ⇔ ∃x,p ⊩ ψ(x) 。

注意我们的初始逻辑符号没有析取、蕴含和全称量词。

根据力迫关系的定义,不难证明如下引理成立:

引理1:q ⊇ p → (p ⊩ ψ → q ⊩ ψ)。

引理2:p ⊮ ψ ∧ ¬ψ。

引理3:如果 p ⊮ ψ ,那么存在 q ⊇ p 满足 q ⊩ ¬ψ¬ψ。

证明:对公式递归即可。

我们称引入的常元G 对应的集合是generic,当且仅当对于任意 Ը' 公式 ф , G ⊩ ф 或者 G ⊩ ¬ψ,其中 G ⊩ ф ⇔ ∃p ⊂ G,p ⊩ ф 。

定理:对于任意p ∈ P,存在generic的 G ⊃ p 。

证明:令ф₁,ф₂,· · · 是 Ը' 的一个枚举,根据引理 3 可得如果 p ⊮ ф₁ ,那么存在 q ⊃ p 满足 q ⊩ ¬ф₁,令 q=p₁ ,那么递归可得 p₁,p₂,· · · 最后令 G=∪pᵢ 即可ᵢ∈ω,不难验证 G ⊩ ф 或者 G ⊩ ¬ф 。

此时的G 是一个 ω 的函数,那么这是一个什么样的函数呢?

引理4:G ⊩ G is infinity 。

证明:用反证法。

假设存在p ⊂ G ,p ⊩ ∃n ∈ ω∀x(G(x)=1 → x ≤ n),那么 p ⊩ ∀x(G(x)=1 → x ≤ n) ,根据力迫关系可得不存在 q ⊃ p 满足 q ⊩ ∃x(G(x)=1∧x ≥ n)。

由于 p 的定义域有上界,不妨设 dom(p)∪n ⊂ i,那么 q=p∪{〈i,1〉} ⊩ G(i)=1∧n∈i,矛盾,反证引理 4 成立。

引理5: G 力迫“G 的任意算术子集都是有穷的”。

证明:令ψ(x) 定义了 G 的算术子集 A ,那么存在 p ⊂ G 满足 p ⊩ ∀x(ψ(x) → x∈G),由于 p 的定义域有限,因此只有有限个 x∈ω 满足 p ⊩ x∈G,这蕴含只有有限个 x 满足 p ⊩ ψ(x) ,因此 p 力迫“ A 是有穷集合”, G 也力迫“ A 是有穷集合”,引理 5 得证。

推论1: G 不是算术子集。

证明:由引理4,5 可得。

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

宿主我在每个时代风生水起 连载中
宿主我在每个时代风生水起
小小小小布丁
范小七是一只鲤鱼,她不想变青龙,想变漂亮的蛟龙,但是上级让她做任务,去帮那些缺了点气运的女主,于是她绑定了系统害第一个世界高考,什么玩意女主......
6.7万字9个月前
喜欢我的人太多怎么办!(系统) 连载中
喜欢我的人太多怎么办!(系统)
之州.
简落,是Y市简家流落在外的私生子。“请确定是否开启主线任务。”系统的声音继续响起“主线任务是什么?”“让所有人都爱上你”
39.4万字9个月前
Ch:综艺含卫联(私设) 连载中
Ch:综艺含卫联(私设)
柚琉
0.0万字9个月前
我的怨灵鬼王 连载中
我的怨灵鬼王
火页乂
泪化为彼岸花,鬼王的真命天女!?一不小心爱上女主,可只有前世宿主死于自己之手方得自由与生命
2.6万字9个月前
小心甜心:救你 连载中
小心甜心:救你
小萌糖果
在宅国,女人没有地位,男人有本事的才有地位,没本事也没地位。尤其,在皇室里……
0.5万字9个月前
小狐狸的异世行 连载中
小狐狸的异世行
温家二姑娘
一只九尾灵狐意外掉落异世从此开启异世修行的二三事。
9.5万字9个月前