数学联邦政治世界观
超小超大

维塔利集合 (2-1)

1.维塔利集合的构造

定义X ~ Y:若X – Y ∈ ℚ则 X 和 Y 属于同一个等价类°。从(0,1) 区间每个等价类中选择一个元素,组成的集合,称为维塔利集合,设该集合为V。

2.构造合法性分析

学界认为集合V 勒贝格不可测。如果承择公理°,该集合构造是合法的。

反对选择公理的人士认为:不描述出方法,就不能证明可以从非空集合中选择一个元素

选择公理确实难以给出严谨证明,但至少对于维塔利集合构造过程中的选择动作,我们可以描述出具体选择方法。

一般地,对于任意一个等价类Vₖ,其有一个确定的无理数因子k满足

∀υ ∈Vₖ,υ – k ∈ ℚ,则可以写成如下形式的集合Vₖ={q+k|q ∈ ℚ,q+k∈(0,1)}

要从每个 Vₖ 中选择一个元素 υ,即任选一个有理数q,并不难,因为对于任意的无理数 k 都有且只有1个整数 qz 使 0<qz+k<1,每个等价类都选这个整数,令g=—[k] 即可保证υ=q+k ∈ Vₖ 是从该等价类在 (0,1) 区间内选出的元素。

所以即使不承认选择公理,也无法拒绝维塔利集合存在的事实。

(如果反对者认为没有这样的条件为每个等价类定义一个k,那就是质疑Vitali给出的定义描述“从(0,1)区间每个等价类中...…”还没有说出“选择”2字,描述就已经出了问题,定义不明确,与选择公理无关,请联系Vitali本人)

3.维塔利集合不可测性

1

计算集合V 的测度α即为计算──,

其中∞代表可列集的势,直观上该式计算结果为零。现有理论认为,根据测度可列可加性,(0,1) 区间的测度 1 须由可列个 V 的测度求和得到,即S=α+α+α+· · ·=1

由于α=0则S=0

α>0则 S 发散,因此这样的 α 不存在。

如果α的个数超过可列,α=0是允许的,(如(0,1)区间的所有单元素子集测度都是0,加在一起的测度是1);本式要求α的个数可列,那么不存在这样的实数α满足可列个α求和等于有限正数。

为了更直观说明,正态分布概率模型“允许x在(–∞,+∞)取值,而

(x–μ)²

1 – ───

∫⁺∞₋∞ ───e 2σ² dx=1,√2πσ

其他一些概率模型也允许x在无限范围内取值,唯独均等概率模型不可以(不存在常数C满足

∫⁺∞₋∞ Cdx=1)

为了表示维塔利集合的测度,在某些情况可以借用一个无穷小量 1

──|x→+∞ 来表示, x

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

捉鬼师后日谈同人文 连载中
捉鬼师后日谈同人文
89桑塔纳
0.3万字1个月前
星拟:正在努力加载中…… 连载中
星拟:正在努力加载中……
桶中加尿泼谁谁发疯
正在努力拉屎中……应该可以算是oc
0.2万字1个月前
我磕的古代CP们 连载中
我磕的古代CP们
💤皖晚🌀
本文内容大致是:为了磕古代前辈们的CP(可能会掺一些其他的,比如海底两万里),写成很多篇言情短篇小说,合在一起(虽然可能会有人觉得不尊重,但......
0.1万字1个月前
男神国游记 连载中
男神国游记
泪朽君
[已断更,勿看!这本小说仿写梨花源,不喜勿喷。为甜甜姐姐创作,甜甜姐姐有绝对的话语权。禁止抄袭鸭]新元世纪中,宋甜甜醉酒为乐。缘市行,忘路之......
7.1万字1个月前
失忆了那又怎样 连载中
失忆了那又怎样
该用户已注销
世界没有纯爱是不完美的
14.7万字1个月前
精灵梦叶罗丽之希月之星辰 连载中
精灵梦叶罗丽之希月之星辰
星辰柔汐颜
有一个与人类世界平行的童话世界,叶罗丽仙境。莹月和时希还有灵公主在一次偶然中成为了很好的朋友,仙境大战突如其来,很多仙子都选择了自己的立场,......
0.5万字1个月前