数学联邦政治世界观
超小超大

连续统基数 (2-1)

自然数集基数

定义自然数集基数:|N|=ℵ₀。

(κ<ℵ₀ ⇔ κ ∈ N)

自然数集基数运算

加法运算: ℵ₀+ℵ₀=ℵ₀

证明:令集合

A={αₙ|n ∈ N} B={bₙ|n ∈ N},A≈B≈N ⇒ |A|=|B|=ℵ₀ 。构建序列c₂ₖ=αₖ

(cₙ)∞ₙ₌₀={ 则c₂ₖ₊₁=bₖ

A∪B={cₙ|n ∈ N} ⇒ |A+B|=ℵ₀+ℵ₀=|C|=ℵ₀,得证。

推论:n+ℵ₀=ℵ₀

证明:由

n>0 ⇒ ℵ₀ ≤ n+ℵ₀ ≤ ℵ₀+ℵ₀=ℵ₀ ⇒ n+ℵ₀=ℵ₀ 。

乘法运算: ℵ₀ · ℵ₀=ℵ₀

证明:构建双射函数f:N² → N,

(m,n) (m+n+1)

f(m,n)=─────────+m。

2

详细证明参见:

推论:n · ℵ₀=ℵ₀

证明:

n ≥ 1 ⇒ ℵ₀ ≤ n · ℵ₀ ≤ ℵ₀ · ℵ₀=ℵ₀ ⇒ n · ℵ₀=ℵ₀ 。

幂运算: (ℵ₀)ⁿ=ℵ₀(乘法运算的推论)

连续统基数‬

(我们称实数集R 为连续统 Continuum)

定理

|R|=|P(N)|=|2ᴺ|。证明

1. 对 N 的子集构建 N → {0,1} 特征函数‬

0 n∈S

χₛ, ∀S ⊆ N χₛ(n)={ ,1 n∉S

特征函数形成 P(N) 与 {0,1}ᴺ 的一一映射,因此 |P(N)|=|2ᴺ|。

2. 通过 Dedekind Cut 定义实数为有理数集的分割 r=(A,B) A,B∈Q,R 到 P(Q) 形成单射函数 ⇒ |R| ≤ |P(Q)|=|P(N)|=|2ᴺ|。(此处 Q 为可数集,与 N 等势,因此幂集基数相等)

3. 实数作为无限不循环小数可表示为仅包含 0,1 无限数列 (αₙ)∞ₙ₌₀ 形式,即 0.α₀α₁α₂α₃ . . . .(αᵢ=0 1) ,形成 2ᴺ 到 R 的单射映射 ⇒|2ᴺ| ≤ |R| .

综合2,3,根据

Cαntor — Bernstein — Schroeder Theorem(定理相关笔记详见下方) |2ᴺ|=|R|,综合1,2,3,|P(N)|=|2ᴺ|=|R| 。

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

奇喵人物 连载中
奇喵人物
李薇薇_6050978584958027
以几个奇喵主角为主线
1.0万字9个月前
东方末神秘人 连载中
东方末神秘人
失落的女孩_19702472693173
2.6万字9个月前
宿命(短篇小说) 连载中
宿命(短篇小说)
林焉.
在时间这条慢慢长河中,没有人能改变事实
0.6万字9个月前
除魔,可魔是你 连载中
除魔,可魔是你
千雨半梦
师徒文,不喜欢主角有两幅面孔的,请排雷。本书为穿书文,第三视角开写。啍…但是这本书难度好大,怕写不好成烂文了,怎么办…怎么办
0.0万字9个月前
重生之请替我好好爱他 连载中
重生之请替我好好爱他
北北诗
【已签约】正文已经完结啦,开启全新篇章,宝贝子们可以从第六十八章开始阅读。“沈鹤,我还爱你啊。”临别之际,她心灰意冷,一直以为姜家倒塌是那个......
16.7万字9个月前
翔空是…… 连载中
翔空是……
梦零莹
这人很懒,啥都没写。
0.2万字9个月前