数学联邦政治世界观
超小超大

连续统基数 (2-1)

自然数集基数

定义自然数集基数:|N|=ℵ₀。

(κ<ℵ₀ ⇔ κ ∈ N)

自然数集基数运算

加法运算: ℵ₀+ℵ₀=ℵ₀

证明:令集合

A={αₙ|n ∈ N} B={bₙ|n ∈ N},A≈B≈N ⇒ |A|=|B|=ℵ₀ 。构建序列c₂ₖ=αₖ

(cₙ)∞ₙ₌₀={ 则c₂ₖ₊₁=bₖ

A∪B={cₙ|n ∈ N} ⇒ |A+B|=ℵ₀+ℵ₀=|C|=ℵ₀,得证。

推论:n+ℵ₀=ℵ₀

证明:由

n>0 ⇒ ℵ₀ ≤ n+ℵ₀ ≤ ℵ₀+ℵ₀=ℵ₀ ⇒ n+ℵ₀=ℵ₀ 。

乘法运算: ℵ₀ · ℵ₀=ℵ₀

证明:构建双射函数f:N² → N,

(m,n) (m+n+1)

f(m,n)=─────────+m。

2

详细证明参见:

推论:n · ℵ₀=ℵ₀

证明:

n ≥ 1 ⇒ ℵ₀ ≤ n · ℵ₀ ≤ ℵ₀ · ℵ₀=ℵ₀ ⇒ n · ℵ₀=ℵ₀ 。

幂运算: (ℵ₀)ⁿ=ℵ₀(乘法运算的推论)

连续统基数‬

(我们称实数集R 为连续统 Continuum)

定理

|R|=|P(N)|=|2ᴺ|。证明

1. 对 N 的子集构建 N → {0,1} 特征函数‬

0 n∈S

χₛ, ∀S ⊆ N χₛ(n)={ ,1 n∉S

特征函数形成 P(N) 与 {0,1}ᴺ 的一一映射,因此 |P(N)|=|2ᴺ|。

2. 通过 Dedekind Cut 定义实数为有理数集的分割 r=(A,B) A,B∈Q,R 到 P(Q) 形成单射函数 ⇒ |R| ≤ |P(Q)|=|P(N)|=|2ᴺ|。(此处 Q 为可数集,与 N 等势,因此幂集基数相等)

3. 实数作为无限不循环小数可表示为仅包含 0,1 无限数列 (αₙ)∞ₙ₌₀ 形式,即 0.α₀α₁α₂α₃ . . . .(αᵢ=0 1) ,形成 2ᴺ 到 R 的单射映射 ⇒|2ᴺ| ≤ |R| .

综合2,3,根据

Cαntor — Bernstein — Schroeder Theorem(定理相关笔记详见下方) |2ᴺ|=|R|,综合1,2,3,|P(N)|=|2ᴺ|=|R| 。

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

所有书的番外 连载中
所有书的番外
莺啼月洛
本文包含作者写的所有书,此文因为是番外,所以不长更
2.7万字1个月前
快乐的事,也有离别 连载中
快乐的事,也有离别
风华_77459952121294688
羽白明明作为一名学生只需要好好读书就可以了,但,为什么结局总是离别。(作者之前没有写过小说,而且对一些东西不是很了解,同时作者还是一名学生,......
3.3万字1个月前
快穿之她专业撩男 连载中
快穿之她专业撩男
许青山
【万人迷女主+心机渣女+嫖男人+无脑玛丽苏+狗血剧情+虐男不虐女】他们说,她是雪花的亲吻,是深海的明珠,是光的精灵。是他们目光所及之处,盛开......
25.6万字1个月前
再次离开 连载中
再次离开
该用户已注销
剧透的不是好孩子
4.2万字1个月前
冥王追妻路:逆天公主小任性 连载中
冥王追妻路:逆天公主小任性
染筱语
  这个世界本就同时存在着多重空间,在一个就做地球的地方,有位少女经常做着同一个梦,突然有一天她从睡梦中醒来却发现所在的时空已经不是自己的地......
7.5万字1个月前
云裳修行之路 连载中
云裳修行之路
云篆
心小事大,心大事小…山路的源头是生活,山路的尽头是还是生活,无论生活把自己推到哪个位置,保持一颗平常心,快乐只属于创造快乐的人……
6.6万字1个月前