数学联邦政治世界观
超小超大

数学多元论(二) (6-1)

四 坍塌论证

本节将论证相对多元论可以坍塌到极端多元论, 我们称其为坍塌论证。

③ 让我们假设相对多元论正确, 即存在着绝对不可判定的命题, 比如CH和¬ CH的真值是不确定的, 因此存在ZFC∪ {CH} 与ZFC∪ {¬ CH} 刻画的宇宙VA 和VB 。

根据相对多元论的定义, 要表述VA 和VB 具有相同的本体 论地位, 我们必须固定作为背景的集合宇宙V, 即假设刻画V的集合论ZFC是一致的。

而如果ZFC 一致, 那么根据哥德尔不完全性定理, ZFC∪ {CONZFC } 和ZFC∪ {¬ CONZFC } 都是一致的 (其中 CONZFC 是通过哥德尔编码对 ZFC 一致性的形式化, ¬ CONZFC 表示 ZFC 是不一致的)。

如果 ZFC∪ {CONZFC } 和 ZFC∪ {¬ CONZFC } 都是一致的, 那么 (根据相对多元论) 它们都刻画了确定的柏拉图世界, 这些世界作为ZFC∪ {CONZFC } 和 ZFC∪ {¬ CONZFC } 的模型, 使得句子 “CONZFC ” 和 “¬ CONZFC ” 同时为真。

而如果句子 “¬ CONZFC ” 为真, 那么ZFC 不一致。 这与上述假设 (即ZFC 是一致的) 相矛盾。

因此, 相对多元论本身 “不一致”。

也就是说, 如果相对多元论正确, 那么ZFC将会同时一致与不一致: ZFC一致, 是由相对多元论的定义要求的, 我们必须固定作为背景的集合论的一致性, 否则无法表述多宇宙观; ZFC不一致, 是由相对多元论和哥德尔定理共同导致的。

因为哥德尔定理不容置疑, 根据归谬原则, 我们似乎只能 得出相对多元论是错误的。

为了避免这一致命性的挑战, 在笔者看来, 相对多元论者只能选择如下两种方案:

(1) 否认ZFC∪ {¬ CONZFC } 的一致性, 根据双重否定规则, 则ZFC∪ {CONZFC } 一致;

(2) 承认ZFC的一致性是不确定的。

① 方案 (1) 的问题:

第一, 否定ZFC∪ {¬ CONZFC } 一致这种做法是任意的、 无原则的;

第二, 因为只有在确保复杂度为∏0 1-的算术句子是可靠s ② 的, 我们才可以证明, 如果ZFC一致, ZFC∪ {CONZFC } 是一致的。

(参见Smith) 但要确保∏0 1-算术句子 (如 “CONZFC ”) 的可靠性s , 多元论者只能从一阶逻辑上升到二阶逻辑。

现在的问题是, 如果多元论者可以通过二阶逻辑保证某个算术句子的可靠性s , 为什么不直接选择二阶逻辑来确保CH的确定性?

根据准范畴性定理 (Quasi-Categoricity Theorem, 即对任何一个二阶理论T的两个模型M1 和M2 , 或者M1 和M2 是同构的, 或者一个同构于 另一个的前段), 所有满足CH的模型都是同构的, 所以CH的真值是确定的。

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

戏子中的女孩:等着,我不会忘你 连载中
戏子中的女孩:等着,我不会忘你
真意之中
主角世界观十分宏大,至今为止,网上绝对没有一个人能超越!这只是第三本的一个介绍,介绍世界世界观的一本小说,我只能说你们爱不爱看?不看,直接写......
1.1万字1个月前
魇惡知境 连载中
魇惡知境
健力老登
俅谙与笙暮
0.3万字1个月前
予卿长安 连载中
予卿长安
碎雪隐梅
“与我而言,人生就是一场冒险,可有了你,便思归隐田园,予卿长安。”
134.7万字1个月前
快穿之系统带我攻略美男(上) 连载中
快穿之系统带我攻略美男(上)
软萌糖果喵
[韶华文社:长风十里,韶华不负]她爱的人将她逼死,她意外到达另一个世界,并且绑定了一个攻略系统,系统励志要她攻略遍天下美男,不光如此,还要穿......
41.5万字1个月前
糟糕,徒弟又要黑化! 连载中
糟糕,徒弟又要黑化!
赤才
12.9万字1个月前
菀心向月却奈何贰 连载中
菀心向月却奈何贰
沉香南栀
菀心向月却奈何【共两部】北宫方才平定,前朝后宫皆不太平,一念之差,万念俱灰。新帝继位,傅之萱一路辅佐,可到了最后,不过是黄粱一梦。如若可以,......
5.0万字1个月前