运算性质
(a)
n+2ℵ⁰=ℵ₀+2ℵ⁰=2ℵ⁰+2ℵ⁰=2ℵ⁰(n∈N)
证明:2ℵ⁰ ≤ n+2ℵ⁰ ≤ ℵ₀+2ℵ⁰ ≤ 2ℵ⁰+2ℵ⁰=2 · 2ℵ⁰=2ℵ⁰⁺¹=2ℵ⁰,根据Cαntor — Bernstein — Schroeder Theorem 得证。
(b)
n · 2ℵ⁰=ℵ₀ · 2ℵ⁰=2ℵ⁰ · 2ℵ⁰=2ℵ⁰ (n∈N,n>0)
证明:
2ℵ⁰ ≤ n · 2ℵ⁰ ≤ ℵ⁰ · 2ℵ⁰ ≤ 2ℵ⁰ · 2ℵ⁰=2ℵ⁰ · 2ℵ⁰=2ℵ⁰⁺2ℵ⁰=2ℵ⁰,根据Cαntor — Bernstein — Schroeder Theorem 得证。
*** 推论 |R × R|=|R|
(c)
(2ℵ⁰)ⁿ=(2ℵ⁰)ℵ⁰=nℵ⁰=ℵ₀ℵ⁰=2ℵ⁰(n∈N,n>0)
证明:
2ℵ⁰ ≤ (2ℵ⁰)ⁿ ≤ (2ℵ⁰)ℵ⁰=2ℵ⁰ ²=2ℵ⁰,2ℵ⁰ ≤ nℵ⁰ ≤ ℵ₀ℵ⁰ ≤ (2ℵ⁰)ℵ⁰=2ℵ⁰ ²=2ℵ⁰
*** 推论: n 维实数空间 Rⁿ 的所有点集基数为 2ℵ⁰ 。
数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。