数学联邦政治世界观
超小超大

数学多元论(一) (6-4)

初始一致性 (primitive consistency, 以下简称 “一致性P ”): 对任何一个数学理论T, T 的一致性是确定的。

需要再次强调的是, 一致性R和一致性p 分别是由一阶逻辑的完全性推导的: 如果一个理论是真的, 则存在满足这个理论的模型 (我们需在元理论中给出这个模型的性质); 而如果存在满足这个理论的模型, 则说明这个理论是一致的。

在这里我们排除不一致的理论, 我们规定一个不一致的数学理论是错误的、 不可欲的 (undesired), 譬如, 素朴的集合论是错误的、 不可欲的数学理论。

另外, 二阶逻辑的不完全性定理告诉我们, 存在许多一致的数学理论, 它们没有相应的模型。

本文将不讨论这两种复杂的情况。

我们在下一节将论证一致性R不能解决 (菲尔德表述的) 贝纳塞拉夫问题; 在第五节论述相对多元论必然会坍塌到极端多元论, 一致性P必然会坍塌到一致性R , 因此相对多元论也无法解决(菲尔德表述的)贝纳塞拉夫问题。

三 极端多元论与贝纳塞拉夫问题

根据第一节的分析, 认识论上, 极端的多元论者需要解释如下可靠性断定∗: 可靠性断定∗: 如果数学家A一致R 地相信 (或想象) 命题p, 那么p为真。

而根据上一节的论述, p命题的一致性R 需要借助某个理论T的一致性R , 后者则需另一个理论T∗的 一致性R , 如此以至无穷, 因此这种一致性不是一个稳定的概念。

换言之, 诉诸一致性R , 我们至少需要知道T∪ {p} 是一致R 的, 但要知道后者的一致性R , 或者需诉诸另一个更大的理论T∗的一致 性R , 或者需知道数学理论T是真的; 前者会导致无穷后退, 后者会使得一元论面临的贝纳塞拉夫问题重新出现。

极端的多元论者可以选择在无穷序列T1 , ……, Tn , ……的某个点上停下来, 但除非诉诸神秘的官能, 这种解释并没有缓解 “一致性R ” 的不稳定性。

极端多元论的另一个问题是, p的一致性R 对理论T的一致性R的依赖, 会使信念p与事实p不能一一对应, 因此我们并不能获知此命题所描述的抽象宇宙的任何信息。

举例而言, 假设张三从来没有去过新疆某个小村庄, 也不可能通过其他间接的方式知道那里的一切, 但是她宣称自己知道那里发 生的一切。

假设那个小村庄确实发生了张三所说的一切, 这十分令人惊讶。

按照菲尔德的表述, 张三必须解释她的信念p与事实p是如何对应的, 否则一切仅仅是机缘巧合。

根据多元论者, 只要张三能够一致地想象新疆的那个小山村发生的一切, 那么她就会立即知道那里发生的一切, 因为任何一致的 理论或命题都对应着某个确定的世界。

在这里, 我们注意到, 即使诉诸一致性R , 多元论者也必须坚持信念p与事实p总存在某种对应, 或者至少固定信念p与事实p的关系, 但事实并非如此。

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

路途遥远,还好有你 连载中
路途遥远,还好有你
陈皮同志
还是安德&护卫,可以看作是《素食吸血鬼传》的一个延伸。安德=我护卫=我喜欢的女生(《茶啊二中——乘风破浪》里说过)
2.3万字11个月前
心机婊上位计 连载中
心机婊上位计
小伶仙
你怎么不看人家是不好看嘛?嘤嘤嘤(作品低俗劝你别看)
0.7万字11个月前
鱼鳞之约 连载中
鱼鳞之约
素染千尘
彼之玉佩,叮当作响,鱼跃水中,是水月镜花,还是一切真实。一片鱼鳞,一寸相思,寄我以明月,寄我以哀思。鱼女和人鱼,他和她,她和他,会有怎样的故......
31.3万字11个月前
月老她是个小作精 连载中
月老她是个小作精
李朵儿
(已签约/已完结)看作天作地的月老到了兽世如何虐的兽人们又爱又恨。温柔的虎兽是那个她说什么就是什么的舔狗司命星君?而且他如今正在历情劫?好的......
23.0万字11个月前
天降红颜:家有萌妖圆滚滚 连载中
天降红颜:家有萌妖圆滚滚
画颜妆
阴山,是仙帝居住的一座山,也是修仙者所向往的一个圣地。矗立在这山峰最高处的墨居阁,无疑就是强者之中的佼佼者。只不过在这之中,却也有那么一个特......
65.1万字11个月前
坠落在凡间的天使 连载中
坠落在凡间的天使
豆子dou
你相信天上有天使嘛?一个掌管天使碎片白发的少年天使因失误丢失了的碎片,被神处罚找回碎片,这个白发天使从九重天坠落下去,结果砸到匆匆路过的女孩......
9.3万字11个月前