数学联邦政治世界观
超小超大

数学多元论(一) (6-4)

初始一致性 (primitive consistency, 以下简称 “一致性P ”): 对任何一个数学理论T, T 的一致性是确定的。

需要再次强调的是, 一致性R和一致性p 分别是由一阶逻辑的完全性推导的: 如果一个理论是真的, 则存在满足这个理论的模型 (我们需在元理论中给出这个模型的性质); 而如果存在满足这个理论的模型, 则说明这个理论是一致的。

在这里我们排除不一致的理论, 我们规定一个不一致的数学理论是错误的、 不可欲的 (undesired), 譬如, 素朴的集合论是错误的、 不可欲的数学理论。

另外, 二阶逻辑的不完全性定理告诉我们, 存在许多一致的数学理论, 它们没有相应的模型。

本文将不讨论这两种复杂的情况。

我们在下一节将论证一致性R不能解决 (菲尔德表述的) 贝纳塞拉夫问题; 在第五节论述相对多元论必然会坍塌到极端多元论, 一致性P必然会坍塌到一致性R , 因此相对多元论也无法解决(菲尔德表述的)贝纳塞拉夫问题。

三 极端多元论与贝纳塞拉夫问题

根据第一节的分析, 认识论上, 极端的多元论者需要解释如下可靠性断定∗: 可靠性断定∗: 如果数学家A一致R 地相信 (或想象) 命题p, 那么p为真。

而根据上一节的论述, p命题的一致性R 需要借助某个理论T的一致性R , 后者则需另一个理论T∗的 一致性R , 如此以至无穷, 因此这种一致性不是一个稳定的概念。

换言之, 诉诸一致性R , 我们至少需要知道T∪ {p} 是一致R 的, 但要知道后者的一致性R , 或者需诉诸另一个更大的理论T∗的一致 性R , 或者需知道数学理论T是真的; 前者会导致无穷后退, 后者会使得一元论面临的贝纳塞拉夫问题重新出现。

极端的多元论者可以选择在无穷序列T1 , ……, Tn , ……的某个点上停下来, 但除非诉诸神秘的官能, 这种解释并没有缓解 “一致性R ” 的不稳定性。

极端多元论的另一个问题是, p的一致性R 对理论T的一致性R的依赖, 会使信念p与事实p不能一一对应, 因此我们并不能获知此命题所描述的抽象宇宙的任何信息。

举例而言, 假设张三从来没有去过新疆某个小村庄, 也不可能通过其他间接的方式知道那里的一切, 但是她宣称自己知道那里发 生的一切。

假设那个小村庄确实发生了张三所说的一切, 这十分令人惊讶。

按照菲尔德的表述, 张三必须解释她的信念p与事实p是如何对应的, 否则一切仅仅是机缘巧合。

根据多元论者, 只要张三能够一致地想象新疆的那个小山村发生的一切, 那么她就会立即知道那里发生的一切, 因为任何一致的 理论或命题都对应着某个确定的世界。

在这里, 我们注意到, 即使诉诸一致性R , 多元论者也必须坚持信念p与事实p总存在某种对应, 或者至少固定信念p与事实p的关系, 但事实并非如此。

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

暗淡又灿烂的你 连载中
暗淡又灿烂的你
啊攸
“请赎给我你的生命。”
1.0万字1年前
小画渣日常 连载中
小画渣日常
小监控小唐
有时候会发我画的画,也可能写skibidi的剧情,是自编哦
0.9万字1年前
玉君歌 连载中
玉君歌
初梦秋意殇
21世纪佣兵女王红叶穿越到天灵大陆,却遭人陷害,意外横死。好在上天给了她一次机会,让她重新来过,这一次她不会再手软了。但这个男人是什么情况?......
40.1万字1年前
梦回万古之无泪非无情 连载中
梦回万古之无泪非无情
楠溪衍
【月寒文社】明月之身高挂幽冷寒映人间(本书已签约,勿抄袭,勿转载,违者一律追究法律责任)九万年前,她错信了人,痴心换来一场灭世浩劫,那一战,......
11.5万字1年前
虫族:被丢弃的卡牌 连载中
虫族:被丢弃的卡牌
汐贝
殊遇获得了一张角色卡,卡牌里住着一只雄虫。雄虫长得可好看了,即使对什么都很冷淡,还是很可爱的。众所周知雄虫是很麻烦的生物,被摊上的雌虫都没有......
3.3万字1年前
三生菩提,三世成劫 连载中
三生菩提,三世成劫
玖玥绾芊辰
本文是三生三世菩提劫同人文,以写墨绾为主,东凤为铺,夜浅为客串。本文不定时更新,但会勤更。三生三世菩提劫是唐七三生三世系列之一,和三生三世步......
1.4万字1年前