数学联邦政治世界观
超小超大

费马大定理 (5-3)

那么,p-亏量的上述模式是否对于所有的椭圆曲线都适用的?很遗憾,不是。上述例子主要是让你熟悉Nₚ的定义以及p-亏量概念的由来。p-亏量 αₚ 真正的"一般规律"是传说中的模性模式。这是本文最核心的概念,也是证明费马大定理的关键。下面我们来体会一下模性模式这个概念的一个轮廓。

数学家们花了很长时间发现这样一个规律,我们以E₂为例子来说明。先看一个无穷乘积:

θ=T[(1-T)(1-T¹¹)]²×[(1-T²)(1-T²²)]²×[(1-T³)(1-T³³)]²......

我去,这式子有点复杂!没关系,把前面的因子先乘起来,然后再展开成像幂级数那样指数由小到大的排列形式,我们取前13项,有:

θ=T-2T²-1T³+2T⁴+1T⁵+2T⁶-2T⁷-2T⁹-2T¹⁰+1T¹¹-2T¹²+4T¹³+......

然后再检查E₂的p≤13的p-亏量:

α₂=0, α₃=–1, α₅=1, α₇=–2, α₁₁=1, α₁₃=4。

把p-亏量对照展开式中加深颜色的数字,你发现了什么?除了 α₂,它们是相等的,这正是该模式关于E₂的结论。令数学家们惊讶的是,这对所有的奇数p都成立。我们称之为关于椭圆曲线E₂的模定理:

●设椭圆曲线E₂为 y²=x³ – 4x²+16 ,无穷乘积为θ=T[(1-T)(1-T¹¹)]²×[(1-T²)(1-T²²)]²×[(1-T³)(1-T³³)]²......,将其展开成和式表示 θ=c₁T+c₂T²+c₃T³+c₄T⁴+. . . . . . 。对于素数p≥3,E₂的p-亏量αₚ就等于 cₚ。

日本数学家谷山丰基于此提出了一个一般性的想法:上述的模式可能对于所有的椭圆曲线都有效!这之后,志村五郎将谷山丰的想法提炼成严格的数学命题:

●每个椭圆曲线都可以模形式化,即椭圆曲线的p-亏量具有模性模式。

这是有名的模猜想,又称谷山-志村猜想。它是椭圆曲线最深刻的结论之一!

模性模式粗略的说就是和上面E₂的模定理差不多:对于任意的椭圆曲线E,都存在着一个无穷级数 θ=c₁T+c₂T²+c₃T³+c₄T⁴+. . . . . . ,使得对大多数素数p,系数cₚ等于E的p-亏量αₚ,并且该级数拥有复数意义下的某种优美的变换性质。

这就是椭圆曲线E的P-亏量的模性模式!有了这个绝对的杀手锏,现在我们来攻克费马大定理。

费马大定理是说:对于n≥3,丢番图方程 A⏴+B⏴=C⏴没有非零整数解。

因为n是>2的整数,那么它只有素数和合数两种类型,现在令n是合数,即n=pm,m是某个正整数。每个合数都能写成这样,这是算术基本定理保证的。费马方程在合数指数的情况下就变为 (Aᵐ)ᵖ+(Bᵐ)ᵖ=(Cᵐ)ᵖ 。因为最外层的指数是素数,那么如果费马方程在这种情况下有解,显然A、B、C就是对应的合数指数mp的解。又因为p是任选的,所以只要素数指数有解,那么合数指数一定有解。

反之,如果任意素数指数都没有解,那么任意一个以该素数为因数的合数指数也没有解【如果你不理解这个命题,可以用反证法,假设合数指数mp有解A、B、C,那么该指数的方程就是 Aᵐᵖ+Bᵐᵖ=Cᵐᵖ ,也就是(Aᵐ)ᵖ+(Bᵐ)ᵖ=(Cᵐ)ᵖ ,它意味着指数p是有解的,矛盾】,从而整个≥3的所有整数指数都没有解。因此我们只看素数指数就行。

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

我老婆是公主 连载中
我老婆是公主
秋夜丁香
恒宏世家的唯一孙女雨儿,故意搅合着二个丫鬟打闹皇帝,害的本来皇宫里要为她举办的及笄之礼,都泡汤了。因为一直无人求亲,雨儿就举办个比武招亲。没......
7.2万字9个月前
缚心咒 连载中
缚心咒
遗落风中画
记得,我曾在顶端问过他,倘若有一天,父子不再是父子,兄弟不再是兄弟,你会怎么样?他只是浅浅一笑,什么也没说那时候不明白,有的东西不是是非黑白......
7.8万字8个月前
魔匙(不是也没有重名的书啊?!) 连载中
魔匙(不是也没有重名的书啊?!)
作者希岚
这是一个多元化的世界,除了人类,普通的动物,还有异兽,异族。这个世界上存在着一种宝物,名为魔匙,可由于力量太强而分散成八块碎片分别由八大族族......
2.1万字8个月前
虫动乾坤之猴妈出山 连载中
虫动乾坤之猴妈出山
水帘洞煮
人有人他妈,妖有妖他妈,那只猴子怎会没妈,可笑。至于说他是从石头里面蹦出来的,那是以后的事情。再后来,那只猴子修得金身正果,称斗战圣佛,更加......
18.8万字8个月前
雪精灵 连载中
雪精灵
赵近东
集齐作者的中二巨作,中二想法,小故事为主,其中包括各种雪精灵,各种玛丽苏。还有各种癖好其他。1.《雪精灵》  西里尔走投无路,跨过克亚山脉。......
12.8万字8个月前
三生三世白夜情 连载中
三生三世白夜情
泡糯
其实我觉得墨渊白浅也好,白浅夜华也罢,但是墨渊心里已经有了魔族始祖少绾了。一个人喜欢另一个人,却因为爱而不得,继而去喜欢一个与她相似的人,我......
1.9万字8个月前