数学联邦政治世界观
超小超大

几何 (2-1)

我们跳到1945-1954年,基于几何学的两个重要发展,年轻的Hirzebruch所做的工作。第一个发展,是由Leray发起的层论。第二个发展,是Thom的论文中的一些结果,特别是一些关于光滑流形的同胚群。我们陈述了Hirzebruch的两个主要结果,这些结果在[H1]中有详述。

设X 是一个复维度为 n 的非奇异射影代数簇,并且 V → Ⅹ 是一个全纯向量丛。(在我们对曲线的讨论中,我们使用了除子;回想一个除子决定了一个全纯线丛,与我们这里的表述建立了联系。)然后,经过层论定义上同调群 Hq(X,V):H⁰(X,V) 是全纯截面 V → X 的向量空间,并且对于 q≥1,Hq(X,V) 是从 V → X 的全纯截面层的解析得出。上同调群是有限维的,这能够用椭圆微分算子理论和Dolbeault定理证明。(见§3.1-§3.2.)欧拉示性数定义为交错和

(2.3)χ(X,V)=∑(–1)q dim Hq (X,V)

q=0

对于n=1 的黎曼曲面的情况,人们经常想要计算 dim H⁰(X,V) ,但一般来说 dim H⁰(X,V) 依赖的比拓扑数据更多。另一方面,欧拉示性数 χ(X,V) 有一个用 Chern 类 cⱼ(X) 和 cₖ(V) 表示的拓扑公式。特殊情况下,当 dim X=rankV=1 时,这是经典的Riemann-Roch公式 (2.2) 。对于 X 是一个光滑的射影代数曲面 (n=2),并且 V → X 是秩为1的平凡丛,其结果通常被称为Noether公式:

1

(2.4)χ(X)=── (c²₁(X)+c₂(X))χ(X) .

12

在(2.4) 中,Chern类是在由自然定向所给出的 X 的基本类上估计的。分母中存在的12给出了投影曲面的Chern数一个整性定理。对于所有 X 和 V ,解决Riemann-Roch问题——也就是 (2.3) 的计算——是Hirzebruch的重要成就之一。Hirzebruch的公式是用Todd多项式和Chern特征表达的。假设切向量丛 τX=L₁ ⨁ · · · ⨁ Lₙ ,分解为线丛的直和,并且设 yᵢ=c₁(Lᵢ) ∈ H²(X;ℤ) 。那么Todd类是

ₙ yᵢ

(2.5) Todd(X)=∏ ────

ᵢ₌₁ 1 – e⁻ʸⁱ

这是一个(混合的)偶度数的上同调类。类似地,如果V=K₁ ⨁ · · · ⨁ Kᵣ 是线丛的直和,有 xᵢ=c₁(Kᵢ) ,那么Chern特征是

(2.6) ch(V)=∑ eˣⁱ .

ᵢ₌₁

特征类理论中的分解原理允许我们将这些定义推广到不是线丛直和的ТX → X 和 V → X 。

定理 2.7(Hirzebruch-Riemann-Roch)设X 是一个射影复流形, V → X 是一个全纯向量丛。那么

(2.8)χ(X,V)=Todd(X) · ch(V) · r(X) .

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

特种兵学校之魔法般的超能力 连载中
特种兵学校之魔法般的超能力
素雪亭晴
当学员们获得超能力后,会发生什么呢?
5.9万字8个月前
动漫人物日常 连载中
动漫人物日常
莹之悦
快来看看动漫人物的日常吧!动漫人物主要在是《斗龙战士》《激战奇轮》
1.8万字8个月前
死神是我哥哥 连载中
死神是我哥哥
雾槿
别人的外挂是死神,这有什么?我的哥哥是死神,惹过我的人要么都被哥哥杀了,要么都被折磨疯了
4.2万字8个月前
重生劫 连载中
重生劫
三心心
本蓝狐修炼了三千多年,一直以成仙为己任。好不容易得到机会来凡间历练历练,无奈却遇上了下凡历劫的天帝之子——司青。拼尽了半条小命助他渡了情劫,......
11.8万字8个月前
我和我的逗比师尊 连载中
我和我的逗比师尊
枫林静寂
[已签约]人生三大事:喝酒、溜达和摆烂。自从被师尊林溯寒捡回洄清山,姜絮笙就开始了自己的大师姐生涯。“大师姐,师尊又在叫你了!”“知道了知道......
4.8万字8个月前
我的小尾巴2:我的好弟弟 连载中
我的小尾巴2:我的好弟弟
小熊二二
(暂时因为要开别的文所以暂时不会更)就是说,一个治愈文,处女座啦,可能会有点扯,因为是我突然在脑子里的小剧情(本人水瓶的剧情奇怪可能会蛮正常......
0.9万字8个月前