数学联邦政治世界观
超小超大

数学理论(二) (7-5)

S₃={3,5,11…};S₄={5,11,23…};

T={5,11,101…}.

[集合Rᵢ(i=1,2,3,4)分别由全体加2i型素数链的第一个元素组成;集合S₁、S₂、S₃、S₄分别由全体加2加4、加4加2、加2加6、加6加2型素数链的第一个元素组成;集合T由全体加2加4加2型素数链的第一个元素组成]

s以内素数的分布密度是1/㏑s.

因此,s以内集合Qᵢ(i=1,2,3,4)中元素的分布密度同样是1/㏑s.

又(s/㏑s)/(1/㏑3+1/㏑4…+1/㏑s)→1.

因此,s以内集合Qᵢ(i=1,2,3,4)中元素的能量和为e=(s/㏑s)(1/㏑s)=s/㏑²s.

已知集合Q₁={x|x=a-2,(a∈P)}={0,1,3…}.

且令:集合Q₁中与pᵢ互素的元素的分布比例为yᵢ. (i∈N)

则有:y₀=1;i>0时,yᵢ=(pᵢ-2)/(pᵢ-1).

且令:zᵢ=(pᵢ-1)/pᵢ;rᵢ=(y₀y₁…yᵢ)/(z₀z₁…zᵢ).

则,rᵢ={(1/2)(3/4)(5/6)…[(pᵢ-2)/(pᵢ-1)]}/{(1/2)(2/3)(4/5)(6/7)…[(pᵢ-1)/pᵢ]}可化为式B与式B'如下:

式B、rᵢ=[(3/4)(3/2)][(5/6)(5/4)]…{[(pᵢ-2)/(pᵢ-1)][p₍ᵢ₋₁₎/(p₍ᵢ₋₁₎-1)]}[pᵢ/(pᵢ-1)].

式B'、rᵢ=(3/2)[(3/4)(5/4)][(5/6)(7/6)]…{[(pᵢ-2)/(pᵢ-1)][pᵢ/(pᵢ-1)]}.

式B中 pᵢ/(pᵢ-1)>1;

[(pₘ-2)/(pₘ-1)][pₘ₋₁/(pₘ₋₁-1)]>1.

(m=2,3…i)

因此,rᵢ>[(3/4)(3/2)][(5/6)(5/4)]…{[(pᵢ-2)/(pᵢ-1)][p₍ᵢ₋₁₎/(p₍ᵢ₋₁₎-1)]}.

式B'中 [(pₘ-2)/(pₘ-1)][pₘ/(pₘ-1)]<1.

(m=2,3…i)

因此,rᵢ<(3/2)[(3/4)(5/4)][(5/6)(7/6)]…{[(p₍ᵢ₋₁₎-2)/(p₍ᵢ₋₁₎-1)][p₍ᵢ₋₁₎/(p₍ᵢ₋₁₎-1)]}.

经计算,rᵢ=2,1.5,1.406,1.367,1.354…

当i=253时,1.3196<rᵢ<1.3204;

随着i的不断增大,rᵢ→1.3203236…

因此,rᵢ→1.320(精确到千分位).

即,集合Q₁存在参照常数r=1.32.

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

花之茗,渡花生 连载中
花之茗,渡花生
卡特栗娜
以花之名,渡花生(声)
1.7万字1个月前
明明我才是吸血鬼,为什么是我被咬 连载中
明明我才是吸血鬼,为什么是我被咬
Mingnon
温和单纯吸血鬼少爷×帅气神秘狼人学弟!听说吸了非人类的血会因基因突变而死?谁会蠢到去做这种事?答案是:我自己。而且还是因为被他的帅气迷惑。有......
13.0万字1个月前
心机婊上位计 连载中
心机婊上位计
小伶仙
你怎么不看人家是不好看嘛?嘤嘤嘤(作品低俗劝你别看)
0.7万字1个月前
硬核一中:黑暗者的阳光 连载中
硬核一中:黑暗者的阳光
炎新一的掌上明珠
敢于向黑暗宣战的人,心里必须充满光明。
1.5万字1个月前
妙妙纵横末世 连载中
妙妙纵横末世
一森宝
陈妙妙,一名普通高三学生,因为家庭原因转学到巫县一中学习然后……末世就来了!周围没有一个认识的同学与家人相隔大半个中国怎么办?当然是……新书......
4.0万字1个月前
宫小沫 连载中
宫小沫
我是灵灵啊
这是一神,仙,凡,妖,魔………的一个世界,故事从这里展开。从主角(宫沫沫/宫小沫)是同一个人,开始下凡渡劫,在返回天界的小故事。………“有4......
13.7万字1个月前