数学联邦政治世界观
超小超大

数学理论(二) (7-5)

S₃={3,5,11…};S₄={5,11,23…};

T={5,11,101…}.

[集合Rᵢ(i=1,2,3,4)分别由全体加2i型素数链的第一个元素组成;集合S₁、S₂、S₃、S₄分别由全体加2加4、加4加2、加2加6、加6加2型素数链的第一个元素组成;集合T由全体加2加4加2型素数链的第一个元素组成]

s以内素数的分布密度是1/㏑s.

因此,s以内集合Qᵢ(i=1,2,3,4)中元素的分布密度同样是1/㏑s.

又(s/㏑s)/(1/㏑3+1/㏑4…+1/㏑s)→1.

因此,s以内集合Qᵢ(i=1,2,3,4)中元素的能量和为e=(s/㏑s)(1/㏑s)=s/㏑²s.

已知集合Q₁={x|x=a-2,(a∈P)}={0,1,3…}.

且令:集合Q₁中与pᵢ互素的元素的分布比例为yᵢ. (i∈N)

则有:y₀=1;i>0时,yᵢ=(pᵢ-2)/(pᵢ-1).

且令:zᵢ=(pᵢ-1)/pᵢ;rᵢ=(y₀y₁…yᵢ)/(z₀z₁…zᵢ).

则,rᵢ={(1/2)(3/4)(5/6)…[(pᵢ-2)/(pᵢ-1)]}/{(1/2)(2/3)(4/5)(6/7)…[(pᵢ-1)/pᵢ]}可化为式B与式B'如下:

式B、rᵢ=[(3/4)(3/2)][(5/6)(5/4)]…{[(pᵢ-2)/(pᵢ-1)][p₍ᵢ₋₁₎/(p₍ᵢ₋₁₎-1)]}[pᵢ/(pᵢ-1)].

式B'、rᵢ=(3/2)[(3/4)(5/4)][(5/6)(7/6)]…{[(pᵢ-2)/(pᵢ-1)][pᵢ/(pᵢ-1)]}.

式B中 pᵢ/(pᵢ-1)>1;

[(pₘ-2)/(pₘ-1)][pₘ₋₁/(pₘ₋₁-1)]>1.

(m=2,3…i)

因此,rᵢ>[(3/4)(3/2)][(5/6)(5/4)]…{[(pᵢ-2)/(pᵢ-1)][p₍ᵢ₋₁₎/(p₍ᵢ₋₁₎-1)]}.

式B'中 [(pₘ-2)/(pₘ-1)][pₘ/(pₘ-1)]<1.

(m=2,3…i)

因此,rᵢ<(3/2)[(3/4)(5/4)][(5/6)(7/6)]…{[(p₍ᵢ₋₁₎-2)/(p₍ᵢ₋₁₎-1)][p₍ᵢ₋₁₎/(p₍ᵢ₋₁₎-1)]}.

经计算,rᵢ=2,1.5,1.406,1.367,1.354…

当i=253时,1.3196<rᵢ<1.3204;

随着i的不断增大,rᵢ→1.3203236…

因此,rᵢ→1.320(精确到千分位).

即,集合Q₁存在参照常数r=1.32.

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

星之守护者, 连载中
星之守护者,
_600869716
0.1万字6个月前
无限流——这个NPC是如此的独特 连载中
无限流——这个NPC是如此的独特
彼岸之舟*
如题,该文是一篇无限流恐怖题材。作为恐怖副本里不可或缺的NPC,白景欢的工作向来是无脑的,直到有一天他觉醒了,还恰好遇上了特立独行的任务对象......
32.3万字6个月前
快穿:天生渣女 连载中
快穿:天生渣女
妖烟笑红尘
约1(1vN,女主万人迷,不喜勿入)“不要为了一个渣男伤心,只要完成任务,坐拥三千世界各大美男完全不在话下!
22.1万字6个月前
铃音未响 连载中
铃音未响
安倍影音子
已完结本作品分类定义为【奇幻】类所有事情因潜逃的金铃铛而起,却没想到被来抓拿她的安诺尔背了黑锅,渐渐地才发现不该出现在这里的鬼王,邪神和蝶姬......
22.0万字6个月前
修仙计划 连载中
修仙计划
南熏s
被神仙选中和他一块做任务,看在能成神仙的份上洛璃同意,只是那个老头子怎么总是闯进她和搭档的空间来。
10.0万字6个月前
闲散阅读 连载中
闲散阅读
末影族
已完结,如果有幸被你阅读,可先查看最后一章。都是短篇,质量参差不齐,我会尽量完善的。
10.0万字6个月前