数学联邦政治世界观
超小超大

数学理论(二) (7-4)

且令:s以内集合X中元素的能量和为e,素数元素的数量为q. (s足够大)

则有:q=er.

㈡、论各种奇素数组合的分布.

①、将奇素数组合分为两种类型.

类型一、非动态素数链.

如果序列U={u₁,u₁+u₂,… u₁+u₂…+uₙ}中的元素除以某个奇素数p,所得互异的正整数余数为1,2…p-1. [uᵢ为正偶数(i=1,2…n)]

且令:序列A={a,a+u₁,a+u₁+u₂,… a+u₁+u₂…+uₙ}. (a为奇素数)

则有:序列A中至少有一个数能够被p整除.

当序列A中的元素均为素数时,则称其为加u₁加u₂…加uₙ型素数链(或非动态素数链).

序列A中的元素包含p时才有可能均为素数,使得序列A能够包含p的a值数量有限.

因此,任一型号的非动态素数链数量有限.

类型二、动态素数链.

如果序列U={u₁,u₁+u₂,… u₁+u₂…+uₙ}中的元素除以任意的素数p,所得互异的正整数余数的数量少于p-1个. [uᵢ为正偶数(i=1,2…n)]

且令:序列A={a,a+u₁,a+u₁+u₂,… a+u₁+u₂…+uₙ}. (a为奇素数)

当序列A中的元素均为素数时,则称其为加u₁加u₂…加uₙ型素数链(或动态素数链).

且令:a,a+a₁,a+a₂,…a+aₙ₋₁均为素数. (2≤n<a,2≤a₁<a₂…<aₙ₋₁)

则有:a₁,a₂,…aₙ₋₁除以任意的素数p,所得互异的正整数余数的数量少于p-1个.

故a,a+a₁,a+a₂,…a+aₙ₋₁是动态素数链.

由此可知:任意n(n≥2)个互异且大于n的素数均可组成一条长度为n的动态素数链,几乎所有的奇素数组合都属于动态素数链.

②、以序列A={5,7,11,13}为例展开论述.

序列A={5,7,11,13}中相邻素数的间距依次是u₁=2,u₂=4,u₃=2.

且令:P={全体素数};

Qᵢ={x|x=a-2i,(a∈P)}. (i=1,2,3,4)

且令:Rᵢ=P∩Qᵢ;S₁=R₁∩R₃;

S₂=R₂∩R₃;S₃=R₁∩R₄;

S₄=R₃∩R₄;T=R₁∩R₃∩R₄.

则有:R₁={3,5,11…};R₂={3,7,13…};

R₃={5,7,11…};R₄={3,5,11…};

S₁={5,11,17…};S₂={7,13,37…};

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

Z:苒苒物华休 连载中
Z:苒苒物华休
沐棠曦
【勿抄】【抄者必究】【只可惜我文笔平平,写不出我爱的和爱我的一切】只可惜某某身边有某某。只可惜平生不会相思,才会相思,便害相思。仅以日记的形......
0.3万字9个月前
元良续章 连载中
元良续章
白雨映寒山
一次意外,让两个世界相撞,我们成了彼此不可或缺的拼图。我们的相遇,点亮了彼此的夜空。
1.8万字9个月前
霍斩疾之终极神王 连载中
霍斩疾之终极神王
露从今夜白。
<已签约,禁止搬运>昔日的好“兄弟”变成敌人,他们会解开误会回到从前吗?大灾难来临之际,他们会共同守护人族吗?法蓝世界会消失吗?......
6.2万字8个月前
LWAN 连载中
LWAN
墨殇哦
简介正在更新
2.7万字8个月前
师尊是个团宠长老 连载中
师尊是个团宠长老
芬乐
〈此书已签约,本人自创。自己所幻想!这本书我就写写。勉强是一本师徒文吧!哎,真是想象随着生活流浪!禁止转载!芬乐执笔〉牵强戴着伪面具复仇归来......
13.5万字8个月前
贾迪双人CP 连载中
贾迪双人CP
幸福快乐每个人
贾斯汀发现自己对迪恩的小心思后,便开始了漫长的追妻之路,会发生什么事情呢?走进《贾迪双人CP》来看看吧。
0.3万字8个月前