可以使用 中国剩余定理。对于互素的正整数 α,b ,可以直接验证环同态 f:Z/αbZ → Z/αZ × Z/bZ
f(x mod αb):=(x mod α,x mod b)
的逆映射是g(y mod α,z mod b):=ybn+zαm mod αb,这里 m,n 是整数使得 αm+bn=1 ( Bezout等式保证α,b 互素时,这样 m,n 一定存在),因此 f 是环同构,于是我们有Z/αbZ≅Z/αZ × Z/bZ。特别地,它们的乘法群也同构 Z/αbZ)× ≅ (Z/αZ)× × (Z/bZ)× 。考虑等式两边集合的基数,我们就有 ф(αb)=ф(α)ф(b) 。
另一种方法是使用算术函数的 Dirichlet卷积。对于正整数 n ,考虑集合 {1,. . .,n} 的拆分Ad={x∈{1,2,. . .,n}:gcd(x,n)=d},d│n。从定义可知, Ad 有 ф(n/d) 个元素。比较基数我们有
n=∑ф(n/d)
d|n
这说明id=1 * ф ,这里 id(x):=x 是恒等函数, 1(x):=1 是恒为 1 的函数, * 表示 Dirichlet卷积
(f * g)(n):=∑f(d)g(n/d)
d|n
常数函数1 的Dirichlet卷积逆是 Mobius函数 μ ,因此我们有 ф=μ * id 。由于 μ 和 id 都是积性以及两个积性函数的Dirichlet卷积还是积性,我们断定 ф 也是积性。
数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。