数学联邦政治世界观
超小超大

反函数定理和隐函数定理 (2-1)

定义在开集D ⊂ ℝⁿ 上的向量函数 f:D → ℝⁿ

若向量函数f 是一一映射,于是能确定一个定义在 f(D) 上的函数, f⁻¹:f(D) → (D)

将它称为函数f 的反函数,函数 f 及其反函数 f⁻¹ 显然满足

(f⁻¹◦f)(x)=x, x∈D (1)

(f◦f⁻¹)(y)=y, y∈f(D) (2)

定理23.17 (反函数定理):设 D ⊂ ℝⁿ 是开集,函数 f:D → ℝⁿ 满足以下条件:

(i)在 D 上可微,且 f' 连续

(ii)存在 x₀∈D ,使 det f'(x₀) ≠ 0

则存在邻域U=U(x₀) ⊂ D ,使得

1. f在 U 上是一一映射,从而存在反函数 f⁻¹:V → D ,其中 V=f(U) 是开集

2. f⁻¹在V上存在连续导数 (f⁻¹)' ,且

(f⁻¹)'(y)=(f'(x))⁻¹,x=f⁻¹(y),y∈V (3)

证:

二、隐函数定理

设X ⊂ ℝⁿ,Y ⊂ ℝᵐ,Ω=X × Y ⊂ ℝⁿ⁺ᵐ,F:Ω → ℝᵐ,考察向量函数方程‬

F(x,y)=0,x∈X,y∈Y (14)

若存在向量函数f:U → Y(U ⊂ X) ,当用 f(x),x∈U 去替换方程 (14) 中的 y 时,能使方程 (14) 变成恒等式‬

F(x,f(x)) ≡ 0,x∈U (15)

这时称函数f 是由方程 (14) 所确定的定义在 U 上的隐函数

对上述含函数F ,当固定 y∈Y 时,它关于 x 的偏导数记为

F'ₓ(x,y)或DₓF(x,y)(为m×n矩阵) (16)

当固定x∈X 时,它关于 y 的偏导数记为

F'y(x,y)或DyF(x,y)(为m×m矩阵) (17)

定理23.18 (隐函数定理):设 X ⊂ ℝⁿ,Y ⊂ ℝᵐ 都是开集,Ω=X × Y ⊂ ℝⁿ⁺ᵐ (亦为开集), F:Ω → ℝᵐ 。若函数 F 满足下列条件:

(i)存在 x₀∈X,y₀∈Y ,使得 F(x₀,y₀)=0

(ii)F在 Ω 上可微,且 F' 连续

(iii)det F'y(x₀,y₀) ≠ 0

则存在在点x₀ 的 n 维邻域 U=U(x₀) ⊂ X 和点 y₀ 的 m 维邻域 V=V(y₀) ⊂ Y,使得在点 (x₀,y₀) 的 n+m 维邻域 W=U × V ⊂ Ω 内,由方程 (14) 惟一地确定了隐函数 f:U → Y ,它满足

1. y₀=f(x₀)

2. 当 x∈U 时 (x,f(x))∈W ,且有恒等式 (15) ,即 F(x,f(x)) ≡ 0

3. f在U内存在连续偏导数 f' ,且f'(x)=–[F'y(x,y)]⁻¹F'ₓ(x,y),(x,y)∈W (18)

三、拉格朗日乘数法

设D ⊂ ℝⁿ是开集, f:D → ℝ,φ:D → ℝᵐ,n=m+r,并改用行向量记‬

x=(x₁,· · ·,xₙ)=(x₁,· · ·,xᵣ,xᵣ₊₁,· · ·,xᵣ₊ₘ)=(y,z),y∈ℝʳ,z∈ℝᵐ

现在讨论在条件φ(x)=φ(y,z)=0 (25)

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

脑洞杂货铺(不定时更新) 连载中
脑洞杂货铺(不定时更新)
姜汐瑶
这是一个我脑洞的发泄口,偶尔会有一些小短篇掉落,不定时更新。
0.5万字1个月前
猫武士——光明真相 连载中
猫武士——光明真相
luomi洛米
本文是猫武士——新希望的第三部。
2.6万字1个月前
是人鱼,但又不是人鱼 连载中
是人鱼,但又不是人鱼
浅见幽香
2.5万字4周前
小宇家族五界之恋 连载中
小宇家族五界之恋
花小月大大
五界的巨大波动,爱情与和平的双向路线,主角团们将如何应对呢?
2.4万字4周前
在原始森林养熊猫 连载中
在原始森林养熊猫
网名已被删除
一份去森林里帮助毛茸茸的工作
16.3万字4周前
短篇微型小说 连载中
短篇微型小说
落月花凉
5.8万字4周前