数学联邦政治世界观
超小超大

数学定理 (2-1)

Bourgai与Szemerédi定理

按:Jean Bourgain(1954-2018)绝对属于当代最富创造力的一批数学家,在诸多领域留下不胜数的成果和洞见. 也许每个分析学工作者都会在生命的某个阶段接触Bourgain的工作或思想. 这里是一个(不定期)连载系列,记录Bourgain的数学魔法.

自1975年Szemerédi定理(准确地,Szemerédi正则性引理)诞生后,她和她广泛的变体们就成为了数学界的核心话题之一. 这类定理的哲学是“一个足够大/足够随机的集合一定会出现丰富的结构”. 今天就来介绍Bourgain在1986年对ℝ² 正密度子集的Szemerédi型定理的证明,从中可以感受到调和分析在组合学中的威力. 笔者主要参考了以下文献:

[1] J. Bourgain,A Szemerédi type theorem for sets of positive density in R^k

[2] T. Tao,Exploring the toolkit of Jean Bourgain

我们先介绍主要结果.

定理1.(Furstenberg, Katznelson, Weiss) 设可测集 A ⊂ ℝ² 有上界密度 δ=δ(A)>0,则存在 l₀>0 s.t. 对任意 l≥l₀,存在 x,y∈A,|x – y|=l . 这里上界密度

|A∩Bʀ|

δ(A):=lim sup ────,

ʀ→+∞ |Bʀ|

| · | 是Lebesgue测度, Bʀ 是原点为中心, R 为半径的圆盘.

粗略地说,只要集合在平面上足够"稠密",那么集合中所有点对的距离取遍充分大的正实数. FKW的原始证明也是基于遍历论(Furstenberg的一大贡献就是给出了Szemerédi定理的遍历论证明). 而Bourgain证明的第一步是将结论定量化(quantitative formulation),以便硬分析工具的介入.

定理2.(Bourgain) 设可测集 B ⊂ [0,1]²,|B|≥δ>0 . 则对 0<t₁<1,充分大的 J,和分划 0<tᴊ<tᴊ₋₁<. . .<t₁<1 满足 tⱼ₊₁≤tⱼ/2 ,都存在有 1≤j≤J s.t.

lⱼ:=∫ℝ²∫ₛ¹1ʙ(x)1ʙ(x+tⱼω) dσ(ω)dx ≳ δ² .

首先看看定理2如何得到定理1.

2 ⇒ 1. 假设定理1不成立,则存在 0<l₁<l₂<. . .<lᴊ<. . . s.t.

|x – y| ≠ lₖ,∀x,y∈A,k∈ℕ.

WLOG, 设有二进分解lₖ₊₁≥2lₖ . 由上界密度定义,对充分大的 J 仍存在 R>lᴊ,|A∩Bʀ|≥δR² . 令

1

B:=─ A ⊂ [0,1]²,tⱼ:=lᴊ₊₁₋ⱼ/R,

R

则B 符合定理2条件,但根据假设,对任意 1≤j≤J,lⱼ ≡ 0 矛盾!因此定理2就是定理1的定量化. □

下面着手定理2的证明.

证明. 用Plancherel定理变换到频率空间上,

︿ ︿

∫ℝ²∫ₛ¹1ʙ(x)1ʙ(x+tⱼω)dσ(ω)dx

︿

=∫ₛ¹∫ℝ²|1ʙ(ξ)|²eⁱᵗʲω·ξ dξdσ(ω)

︿ ︿

=∫ℝ²|1ʙ(ξ)|² σ(tⱼξ)dξ,

其中S¹ 测度 σ 的Fourier变换‬

︿

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

管理局的日常生活 连载中
管理局的日常生活
江无忌
0.8万字9个月前
快乐修仙队 连载中
快乐修仙队
星落凝成精
女仙帝带着凡间大部分女生和小部分男生修仙,成为有名的灵安宗,妹子们练成后也会来帮助凡间女子脱离哭海
2.2万字9个月前
薄荷小公女 连载中
薄荷小公女
无结尾的恋
孤独的少女被帝国大公收养。开始她的成长治愈罗曼史。孤儿院里的女孩薄荷,每天饱受着各种折磨艰难度日。某天大贵族埃克多尼亚大公突然到来,成为了薄......
2.1万字9个月前
神经分裂 连载中
神经分裂
厌恶时间
你体会过死神与你擦肩而过的感受吗?陵墓,就是指古代帝王,王爷的坟墓也就是我要去的终点。──陵墓游戏少女的精神世界竟然会产生这种恐怖游戏,她自......
10.4万字9个月前
杀手学园喜复仇记 连载中
杀手学园喜复仇记
小希月儿
就不写!(ꐦÒ‸Ó)我个老六
0.5万字9个月前
骨葬屿海 连载中
骨葬屿海
徐熙亦悠
乱世已成定局,却包容下了不期而遇和生死离别,从相遇到重逢,从地球到太空,从沦陷到胜利,他们又会以什么样的后果来决定尘埃。
12.2万字9个月前