某种程度上,哥德尔不完备性定理是对排中律的否定。P270
哥德尔不完备性定理引发的附属问题同样应当提及。既然无论多么错综复杂的数学分支都有不可判定的断言存在,那么我们对某一特定断言能否判定呢?这就是著名的判定问题。它要求一个有效的程序如同计算机一样,能在有限次步骤之内判定一个陈述或一类陈述的可证性。P271
1936年,丘奇使用他新发展的递归函数的概念表明一般不存在判定程序。因此,对一个特定的断言,我们并非总能够找到一个算法判定它是否能证明。在所有特定的情况下人们都有可能发现一个证明,然而这样的证明能否被发现事先并没有检验标准。于是,数学家们尝试求证什么是不可以证明的可能是在浪费时间。至于希尔伯特第十问题,马蒂塞维奇(Turi Matyasevich)于1970年证明:一般情况下没有算法能够判定相应的丢番图方程是否有整数解。这一问题也许并非不可判定,但不存在有效的程序,这意味着对今天大多数的数学家而言,没有一个递归的程序(不必是上面所描述的那一个)能预先告诉我们它是否可解。P272
数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。