数学联邦政治世界观
超小超大

中心极限定理(重点之一)二 (4-2)

2

≤ 𝔼[min(│tXₙⱼ|³,(tXₙⱼ)²)]

≤ ∫|Xₙⱼ|<ϵ|tXₙⱼ|³ dℙ+∫|Xₙⱼ|≥ϵ(tXₙⱼ)² dℙ≤ϵ|t|³σ²ₙⱼ+t² ∫|Xₙⱼ|≥ϵ X²ₙⱼ dℙ

由于

|z₁ · · · zₙ – ω₁ · · · ωₙ| ≤ ∑ |zⱼ – ωⱼ|,

ⱼ₌₁

ᵣₙ 1

│фsₙ(t) – ∏ (1 – ─t²σ²ₙⱼ)│

ⱼ₌₁ 2

ᵣₙ ᵣₙ

≤ϵ|t|³∑ σ²ₙⱼ+t²∑ ∫|Xₙⱼ|≥ϵ X²ₙⱼ dℙ

ⱼ₌₁ j₌₁

先令 ϵ → 0 ,再令 n → ∞ ,根据林德伯格条件,我们得到

ᵣₙ 1

lim│фsₙ(t) – ∏ (1 – ─t²σ²ₙⱼ)│=0

n→∞ ⱼ₌₁ 2

由于

ᵣₙ

e⁻ᵗ²/²=e⁻ᵗ²∑ʳⁿⱼ₌₁ σ²ₙⱼ/²=∏ e⁻ᵗ²σ²ₙⱼ/²,

ⱼ₌₁

我们还需证明

ᵣₙ ᵣₙ 1

lim │∏e⁻ᵗ²σ²ₙⱼ/² – ∏ (1 – ─ ᵗ²σ²ₙⱼ)│=0.

n→∞ ⱼ₌₁ ⱼ₌₁ 2

我们通过计算得到

ᵣₙ ᵣₙ 1

│∏e⁻ᵗ²σ²ₙⱼ/² – ∏ (1 – ─ ᵗ²σ²ₙⱼ)│

ⱼ₌₁ ⱼ₌₁ 2

ᵣₙ 1

≤ ∑│e⁻ᵗ²σ²ₙⱼ/² – (1 – ─ ᵗ²σ²ₙⱼ)│

ⱼ₌₁ 2

ᵣₙ t⁴σ⁴ₙⱼ ᵣₙ

≤ ∑ (── eᵗ⁴σ⁴ₙⱼ/⁴ ) ≤ t⁴eᵗ⁴∑σ⁴ₙⱼ

ⱼ₌₁ 4 ⱼ₌₁

第一个不等式是因为

|z₁ · · · zₙ – ω₁ · · · ωₙ| ≤ ∑ |zⱼ – ωⱼ|,

ⱼ₌₁

第二个不等式是因为

∞ |z|ʲ⁻²

|eᶻ – 1 – z| ≤ |z²|∑ ───

ⱼ₌₁ j!

≤ |z|²e|ᶻ|∀ z ∈ ℂ .

由于 lim max σ²ₙⱼ=0 ,且

n→∞ 1≤j≤rₙ

ᵣₙ

∑ σ²ₙⱼ=1,

ⱼ₌₁

ᵣₙ

我们有 ∑ σ⁴ₙⱼ → 0 .

ⱼ₌₁ n→∞

D

因此фsₙ(t) → фᴢ(t) ,故 Sₙ → Z .

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

微雨微凉 连载中
微雨微凉
南窗飘雪
女频喜刀,作者学生,文笔不好,不喜勿喷,出门不送。
0.7万字1年前
神尊妻妖孽大小姐 连载中
神尊妻妖孽大小姐
凤翎玉
神尊帝皓宸从混沌中诞生,创立六界,掌管万物,亿万年后,神尊不知他活着是为了什么?时常沉睡,致使天地秩序混乱,混沌界和世界有漰溃的危险。混沌灵......
80.7万字1年前
一生一世一双人(浩桐古风) 连载中
一生一世一双人(浩桐古风)
康樊
一向清冷的她,年纪轻轻就飞生上神,绝情绝爱。但她却遇见了他的真命天子
3.7万字1年前
战神大人只爱我 连载中
战神大人只爱我
上姑苏
众人都说她是魔君转世,殊不知她与魔君乃是一体两魂同生同灭。他是天界战神,战无不胜,攻无不克,魔君是他的宿敌,她却是他放不下的执念。“子清为何......
27.6万字1年前
我与诸君皆有缘 连载中
我与诸君皆有缘
NTS.姜慕妍
『已签约』2021.6.2————————————————————————我们对你的爱无关其他,因你值得——————————————————......
5.1万字1年前
阁宝 连载中
阁宝
喜慕
打小住在天虚阁的孟月天,以为天虚阁就是她的家,天虚阁的街坊四邻是自己的家人,从小到大一起长大的何九,是自己最信赖的朋友,一次外人的闯入,打破......
14.2万字1年前