数学联邦政治世界观
超小超大

奇怪的悖论 (2-1)

Talk is cheap, show me the(Ω,F,ℙ) .

当你试图写出符合要求的(Ω,F,ℙ)的时候,就会发现这样的(Ω,F,ℙ)其实不存在。(你很可能会需要类似于“ℕ 或 ℝ₊ 上的均匀分布”以满足“无论其中一个的金额是多少,另一个都有

1

2

的概率包含两倍的金额,

1

2

的概率包含一半的金额”。但这些分布都是不存在的。)

指出问题的关键在于两个箱子的金额期望都不存在,但是我发现将TA的设定稍作修改,可以让两个箱子的金额期望都存在!简单地说,就是将两个箱子的金额之比由 4 换成 q(q>0,q ≠ 1) 。为方便讨论,重新叙述如下:

游戏分为5个步骤:

1. Box A, B; (先声明两个箱子,两个箱子始终拥有固定的、不同的标签)

2. 主持人连续抛掷一枚均匀的硬币,直到出现一次正面为止。记抛掷次数为 n

3. 主持人准备两份现金,金额分别为 qⁿ 和 qⁿ⁺¹ ,并等可能地随机分配给A和B

4. 你等可能地从A和B中选取一个

5. 主持人告诉你,你选的箱子金额为 qᵐ

为了确保以上设定是良定的,须要构造一个相应的概率空间(这种简单离散设定下引入概率空间其实是多此一举,但鉴于此题的特殊性,还是显式构造一个吧):

Ω=ℕ₊ × {0,1} × {0,1},其中的元素记为ω=(ω₁,ω₂,ω₃)。ℙ{ω}=2⁻⁽ω₁⁺²⁾。其中, ω₁ 对应主持人抛硬币的结果, ω₂,ω₃ 分别对应主持人和你选择箱子的结果。为方便记录,这里定义 ˉωᵢ=1 – ωᵢ,i=2,3 .

箱子A, B的金额分别是随机变量A(ω)=qω₁+ω₂ B(ω)=qω₁+ω₂

你选取的金额是随机变量C(ω)=ω₃A+ˉω₃B

定义你未选取的箱子的金额为ˉC(ω)=ˉω₃A+ω₃B

现在问题是求𝔼(ˉC|C=qᵐ)

当m=1 时, {C,qᵐ}={(1,0,1),(1,1,0)},则此时 ˉC 只能为 qᵐ⁺¹=q²;

当m>1 时, {C=qᵐ}={(m,0,1),(m,1,0),(m – 1,1,1),(m – 1,0,0)},在此条件下,

1

ℙ{ˉC=qᵐ⁺¹|C=qᵐ}=─,↓

3

2

ℙ{ˉC=qᵐ⁻¹|C=qᵐ}=─ ←

3

q 2

𝔼(ˉC|C=qᵐ)=(─+─)qᵐ

3 3q

1

若取q=─,

4

5

易得 𝔼(C)=𝔼(ˉC)=─ 。

56

33

对于 m>1 有𝔼(ˉC|C=qᵐ)=─ C>C 。

12

1

而 m=1 时显然 ˉC=─ C<C 。

4

所以,若不被告知C=qᵐ,则 𝔼(C) 与 𝔼(ˉC) 均存在且相等,交换与否无所谓。若被告知 C=qᵐ,则当m=1时不应当交换,而当 m>1 时应当交换(假设风险中性)。𝔼(ˉC)

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

东方末神秘人 连载中
东方末神秘人
失落的女孩_19702472693173
2.6万字1个月前
始源之风 连载中
始源之风
洛云璎
我一生中或许还会有很多个夏天,但不会有一个夏天,会如今夏,欲买桂花同在酒,终不似少年游。
0.2万字1个月前
猫之族 连载中
猫之族
魏延寒霜
这是一篇全旁白的文章,作者文笔不太好(猫之族能加自设,猫族不能)差不多日更
0.1万字1个月前
快穿之完美男配 连载中
快穿之完美男配
公子冥九
云景是《仙界魔尊》里面的深情男配,因为穿越者的关系,察觉到时空漏洞,和系统001绑定,开始了他的穿越之旅。小说在晋江连载过,现在所有章节已锁......
5.6万字4周前
姚梦的后室之旅 连载中
姚梦的后室之旅
莺啼月洛
一个奇葩女孩吃火锅被辣死后遇到了神,在许了10个愿望后来到了后室,开启了她奇葩的无敌后室之旅
1.6万字4周前
快穿之主神大人请厚爱 连载中
快穿之主神大人请厚爱
懒惰的猫爷
那我先给你们说理智看完请看到最后(一切故事都是胡编乱造,如有巧合那就是真事请相信一切都是假的)后面的故事很精彩,请耐心看下去,如果真的实在看......
13.4万字4周前