数学联邦政治世界观
超小超大

奇怪的悖论 (2-1)

Talk is cheap, show me the(Ω,F,ℙ) .

当你试图写出符合要求的(Ω,F,ℙ)的时候,就会发现这样的(Ω,F,ℙ)其实不存在。(你很可能会需要类似于“ℕ 或 ℝ₊ 上的均匀分布”以满足“无论其中一个的金额是多少,另一个都有

1

2

的概率包含两倍的金额,

1

2

的概率包含一半的金额”。但这些分布都是不存在的。)

指出问题的关键在于两个箱子的金额期望都不存在,但是我发现将TA的设定稍作修改,可以让两个箱子的金额期望都存在!简单地说,就是将两个箱子的金额之比由 4 换成 q(q>0,q ≠ 1) 。为方便讨论,重新叙述如下:

游戏分为5个步骤:

1. Box A, B; (先声明两个箱子,两个箱子始终拥有固定的、不同的标签)

2. 主持人连续抛掷一枚均匀的硬币,直到出现一次正面为止。记抛掷次数为 n

3. 主持人准备两份现金,金额分别为 qⁿ 和 qⁿ⁺¹ ,并等可能地随机分配给A和B

4. 你等可能地从A和B中选取一个

5. 主持人告诉你,你选的箱子金额为 qᵐ

为了确保以上设定是良定的,须要构造一个相应的概率空间(这种简单离散设定下引入概率空间其实是多此一举,但鉴于此题的特殊性,还是显式构造一个吧):

Ω=ℕ₊ × {0,1} × {0,1},其中的元素记为ω=(ω₁,ω₂,ω₃)。ℙ{ω}=2⁻⁽ω₁⁺²⁾。其中, ω₁ 对应主持人抛硬币的结果, ω₂,ω₃ 分别对应主持人和你选择箱子的结果。为方便记录,这里定义 ˉωᵢ=1 – ωᵢ,i=2,3 .

箱子A, B的金额分别是随机变量A(ω)=qω₁+ω₂ B(ω)=qω₁+ω₂

你选取的金额是随机变量C(ω)=ω₃A+ˉω₃B

定义你未选取的箱子的金额为ˉC(ω)=ˉω₃A+ω₃B

现在问题是求𝔼(ˉC|C=qᵐ)

当m=1 时, {C,qᵐ}={(1,0,1),(1,1,0)},则此时 ˉC 只能为 qᵐ⁺¹=q²;

当m>1 时, {C=qᵐ}={(m,0,1),(m,1,0),(m – 1,1,1),(m – 1,0,0)},在此条件下,

1

ℙ{ˉC=qᵐ⁺¹|C=qᵐ}=─,↓

3

2

ℙ{ˉC=qᵐ⁻¹|C=qᵐ}=─ ←

3

q 2

𝔼(ˉC|C=qᵐ)=(─+─)qᵐ

3 3q

1

若取q=─,

4

5

易得 𝔼(C)=𝔼(ˉC)=─ 。

56

33

对于 m>1 有𝔼(ˉC|C=qᵐ)=─ C>C 。

12

1

而 m=1 时显然 ˉC=─ C<C 。

4

所以,若不被告知C=qᵐ,则 𝔼(C) 与 𝔼(ˉC) 均存在且相等,交换与否无所谓。若被告知 C=qᵐ,则当m=1时不应当交换,而当 m>1 时应当交换(假设风险中性)。𝔼(ˉC)

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

我的喵仙大人 连载中
我的喵仙大人
橙安安
大学刚毕业不久的南宫依依依旧是身无分文。快到月底了,家里的一只猫一只狗怎么办!等等……猫呢!猫不见了!躺在我床上的这个傲娇美男又是谁!只见那......
36.5万字1年前
戬心:再续千年缘 连载中
戬心:再续千年缘
梦的想象
杨戬没想到敖寸心能为他顶罪,看着敖寸心苍白的脸,杨戬心中说不出的揪心。杨戬暗暗在心里决定,新天条出世后,他一定要将敖寸心救出来,带着她过寸心......
0.6万字1年前
雨果和苏菲亚的狗血恋爱 连载中
雨果和苏菲亚的狗血恋爱
曹雅菲_5739051807347228
和一些狗血剧差不多
0.2万字1年前
九天青鸾 连载中
九天青鸾
刘幸运
九重天风雅温润的九殿下,与不周山颠元宫的青尊尊上,兜兜转转万年,绕不开的情缘纠葛,躲不掉的心之所向。
11.8万字1年前
我的重生修仙历程 连载中
我的重生修仙历程
辰之尘缘
[5.21签约]江芷若重生了!两世修行,竟被人告知还没有摸到顶!于是今世她为了揭开谜底开始走上了登顶之路!遥遥修仙路,星辰大海等待着征服!男......
5.0万字1年前
我是主角,也是反派 连载中
我是主角,也是反派
银色鸢尾花
有着双重人格却不自知的主角莫昀华,失忆时被一个人为的意外卷入斗争,遇上前挚友后展开一系列事件。恢复记忆逐渐发现自己有着双重人格,而主人格一直......
4.4万字1年前