至此,对哥德尔定理问题可以总结归纳如下:
由于一个形式系统中对命题的判定、证明只能是在有限时间、步骤内实现的,因此其逆命题不可判定的结论不可能在有限步或时间内达到,因此本质上在形式系统中无法真正被表达。哥德尔在证明中对全称量词下命题的表述(比如定义。有限字符即可充分实现)与真正表达(需要无限的字符,实际不可能在现实中实现)没有进行区分。这并不奇怪,在有限步内不能确定的“命题的不可判定性”,只能是在无限时间意义上的。有限时间或步骤下只能得到“还没证”、“未判定”这样的命题。哥德尔在此处没有明确表述;因此哥德尔意义上的不可判定语句(并非仅仅是其定义)等等,并不真的存在。希尔伯特纲领仍有实现可能。总之,哥德尔定理的实质,是对不可判定及与其相关的不可证需要无限的时间这个事实没有充分领悟,这当然涉及到量词“对所有n”或“不存在n”云云的实际实现(证明所要求的)而非仅仅是语言刻画即定义。既然有“不存在n”,怎么会有一个依赖于自然数n的哥德尔数?此外,都说哥德尔定理与康托对角线法有渊源,我们说,集合元素间的一一对应必须依赖于具体的对应方式也就是函数关系,根本就没有什么普适的一一对应关系。因此,可数的证明,只需有一个特殊的对应方式把所证集合与自然数一一对应起来即可。而不可数,则需要所有对应方式(函数关系)都不能建立起这种一一对应关系才行。而都知道,这样的函数关系有无穷种,因此理论上不可数根本就不可证。换言之,不可数的定义要求,因为它是一个普遍的、一般性的有关一一对应下的函数关系的结论,因此不能再依赖于任何具体的一一对应函数关系。但实际上被认为是证明了实数集合不可数的康托对角线法却恰恰没有做到这点(当然由前述理由也不可能做到),它隐含了具体的对应方式(详见下文及参考文献笔者的讨论)。类似,可证、可判定概念要求步骤有限(进而时间有限),因此作为其反命题的“不可证”、“不可判定”,必然涉及无限,也就是本质上是实现不了的。
11. 图灵机停机问题的讨论
对于图灵机停机问题,已知与康托对角线法是同构的。不过纵向以不同的图灵机去代替不同的实数,横向以图灵机的输入状态去代替位数,但这里可作每一位有可数无穷种不同的状态而不是多进制的有限种状态。如此,这个二维表中的每一个位置表示具体图灵机的输出状态。下面如所周知地仿对角线法逐位逐行求异,得到无法有算法列出全部可停机的图灵机。但事实上,我们由 图1可知,那里的第三维在二进制下只有两个状态,十进制下有十个状态,而这里的图灵机情况,是“每个输入”(对应于康托对角线法中的“每位”)有可数无穷种状态。也就是 图1此时扩展成了一个完全的三维表。如此而已。而三维立方体中的每一个点,早就证明是可数的,也就是可以遍历的,因此我们完全可以仿这里实数对角线法的做法,把图灵机不是布置成一列,而是布置在一个平面上,对角线也不是二维正方形的对角线,而是三维立方体的对角线,如此,由于图灵机的所有输入产生的所有输出在这张三维立体表中都有了充分的表达,于是不应该再有如康托对角线法的逐位“求异操作”,由此可以破解图灵机停机问题(也就是所谓“希尔伯特问题的不可解性”)。总之,与哥德尔定理中的“不可判定”概念、实数的不可数性概念相仿,
Figure 1. Diagram of binary double diagonal lines
图1. 二进制下双层对角线示意图
数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。