哥德尔在给策墨罗的信中说:“真”这个概念不能归结为有穷组合的性质,而只能取决于它的超穷性质。这就足以反映哥德尔定理就其解释层面的问题所在。正如笔者一贯认为并证明的,在本质上,根本就不会有必须的、不可缺少的“超穷”系统。因此把“真”这个概念推到超穷以试图回避,除了需要对理论做重新解释外,没有其它意义。哥德尔以为,只要把说谎者悖论“夲句错”改成“夲句不可证(非定理)”就可以回避矛盾也就是得不到悖论了。但事实上不然。我们可以证明如下:哥德尔定理,作为定理依赖于系统内的公理,因此只能是系统内的定理。其结论自然也都是系统内的。也就是它只能得到关于系统内的相关结论。而系统内定理其值必真,可是一个二值系统(非真必假。此为以下结论的必要条件)非定理也就是不可证的命题必假。而哥德尔定理既然叫“定理”,也就是承认自己是依据系统内的公理推导出来的,其一切结论如前所述就应该都是系统内的。也就是不可能由它得到一个系统内的的命题但其真值只能由系统外在所谓“超穷意义上”才可确定。如果这种说法站的住脚,那罗素悖论、说谎者悖论(直接与哥德尔命题相关)的另一半,也可以说是另外层次的而不构成悖论,这不就是罗素并不很成功的“类型论”吗?事实上,这种说法直接与定理的定义是矛盾的:一个系统内的定理,得到了一个在系统内不可判定、不可证明的也就是不是系统内的定理但又实际上是真的命题,却又在系统外可以确定其为真。为了刻意回避这个显明的矛盾,人们只能把一个一眼就能看出(其实也就是可以最后一步被显然证明出)的真的结论,非常造作地“假装”成在系统内是得不到的、不知道的,不可证的。而彭罗斯、卢卡斯等人,据此甚至得出“人脑直觉比机器、算法强”这样牵强附会而且充满玄学意味的结论(算法不可证,但人脑可判断或知道其为真)。而另一方面,一旦把人脑、“心智”看成形式系统的一部分,立刻又会有如何知道哥德尔命题(“夲句不可证”)是真的?关于这种两难的局面,各种观点足足争论了近一个世纪。显然,这可看作是理论的困境。按过去的解释,这里面有没有澄清的地方。事实上,既然哥德尔定理最后一步推得了一个明确地必须为系统内的真命题“夲句非定理(不可证)”,与它上一步得到的系统内的假命题“夲句为定理(可证)”就必然在二值逻辑下构成矛盾(悖论)。我们必须明确也只能承认此点。只是在二值逻辑系统中,这个状态尽管在现实世界中不但早就存在而且也早已被发现,但在二值系统中无法进行真值归类。由以上分析可知,哥德尔进而哥德尔定理并没有证明系统内的一个不可证(非定理)的命题而只能由系统外判定其真这回事,因此如果非要下这个结论,它只能是一个“认识”、“断言”“猜想”(而且是如它自己所言,是不可证的!),而且是系统外的。哥德尔定理所实际能够得到的,仍然是与说谎者悖论同构的一个系统内的悖论。那种什么“哥德尔定理巧妙地在悖论的边缘构造了一个命题证明了什么什么”的说辞,或说哥德尔定理是“元数学意义上的定理”(而元数学是什么,它凭什么存在,从来就没有定义清楚过)等附会说法,是无法成立的。既然哥德尔构造的哥德尔语句(夲句不可证)兜了个大圈子,由上文分析知道不过是个系统内的悖论性命题(说谎者悖论,哥德尔一直辩解想否定其构造的那个语句是悖论,但事实上做不到),那么它就应该可以由形式系统和公理集合论所排除,尽管其在系统内可以被表达也允许被表达。
数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。