数学联邦政治世界观
超小超大

Chevalley-Warning定理。 (2-1)

定理叙述

注意:设q=pα ,并设有有限域 𝔽q 。历史注记参考Pete L.Clark。

1935年,Artin猜想对于有限域上的多元多项式组的零点集,可能会有好的结论,他把这个问题交给自己的学生Ewald Warning去做。这时Claude Chevalley来到Göttingen访问,随后就证明了下面的结果。

• (Chevalley定理)设 d₁+· · ·+dᵣ<n 。对每个 1 ≤ i ≤ r ,令 Pᵢ(t₁,· · ·,tₙ) ∈ 𝔽q[t₁,· · ·,tₙ]为带有零常数项的总次数为 dᵢ 的多项式,则存在 0 ≠ x ∈ 𝔽ⁿq 使得 P₁(x)=· · ·=Pᵣ(x)=0 。

• (Warning定理)设 d₁+· · ·+dᵣ<n 。对每个 1 ≤ i ≤ r ,令 Pᵢ(t₁,· · ·,tₙ) ∈ 𝔽q[t₁,· · ·,tₙ] 为总次数为 dᵢ 的多项式,令 Z=#{x:∈ 𝔽ⁿq|P₁(x)=· · ·=Pᵣ(x)=0},则 p│Z 。

在古典代数几何中,我们一般把上面的Z 记为 V(P₁,· · ·,Pᵣ) 。

证明1

在这个证明中,我们考虑集合Z 的特征函数 1ᴢ 。

特征函数的多项式表示

我们有一个多项式版本的特征函数表示:

r

1ᴢ=∏ (1 – fᵢq⁻¹)

i=1

代数小贴士:这就是试题中定义的P 。注意 𝔽q 中的非零元都满足 xq⁻¹=1 。

有限域上函数的多项式表示

我们下面说明一个相当重要的结论:

• 任何函数 f:𝔽ⁿq → 𝔽q由一个多项式给出。

仅需注意到下面的多项式满足要求:

n

Pf(x)=∑ f(y)∏(1–(xᵢ – yᵢ)q⁻¹)

y∈𝔽ⁿq i=1

代数小贴士:只要注意到集合1₀ 的特征函数是

r

1₀=∏(1 – xᵢq⁻¹),然后把它拼凑出来!

i=1

比较两个多项式的次数

注意到1ᴢ 有两种表示的方法:

r

1. 1ᴢ=∏(1 – fᵢq⁻¹)

i=1

n

2. 1ᴢ(x)=∑ ∏(1 – (xᵢ – yᵢ)q⁻¹)

y∈Z i=1

我们分别看它们的次数。

r

1. 左边: 1ᴢ(x)=∑ ∏(1 – fᵢq⁻¹)

i=1

r

(q – 1)∑ dᵢ<(q – 1)n。

i=1

2. 右边:

n

1ᴢ(x)=∑ ∏(1 – (xᵢ – yᵢ)q⁻¹)

y∈Z i=1

中有一个单项式 x₁q⁻¹ · · ·xₙq⁻¹ 。

这单项式的系数是 (–1)ⁿ玄彬冥:,次数是 n(q –1) 。

倘若p ∤ Z,这就导致右边的次数大于左边,这可能发生吗?下面的结论将指出这不可能,从而完成我们的证明。

约化多项式表示

我们称单项式ct₁α₁ · · · tₙαₙ是约化的(reduced),若每个变元的次数 αᵢ<q ;若一多项式的所有单项式都是约化的,则称它是约化的。显然,你也可以称对每个变元 tᵢ 次数小于 q 的多项式是约化的。

代数小贴士:我们刚刚构作的Pf(x) 就是约化的。

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

我到火星上大学 连载中
我到火星上大学
该用户已注销
高考失败,已经失去上大学的权利,没想到一次机会,我竟然进入了火星上大学,这里面的人和物都颠覆了我的思想。天上行走的白翼少年地上奔跑的棕虎少年......
5.5万字8个月前
天乩之情牵三世共你白首 连载中
天乩之情牵三世共你白首
菩提之心
(本作品已签约)情是劫,情是债!当白夭夭变成妖妖的时候,宣白还会再续前缘吗?当锦觅有这么一个聪明机智的姐姐的时候,还会与旭凤在一起吗?新文天......
6.2万字8个月前
狼王梦之一梦几轮回 连载中
狼王梦之一梦几轮回
瑾年别喊年
虐文警告虐文警告!
3.3万字8个月前
马桶人末世,我直接进化超级监控人 连载中
马桶人末世,我直接进化超级监控人
太阳_52159990472642396
马桶人进攻了地球,地球上有着100名被女电视人挑选的战士,主角白泽天就是其中一位,不过白泽天好像拥有某种特殊的能力,他能让击杀马桶人获得的监......
2.7万字8个月前
仙君的仆从重生了! 连载中
仙君的仆从重生了!
阿音爱写文
[正文已完结,禁止抄袭转载]月尘重生了……然后重蹈覆辙,又栽在了韩泾涟手中。他不明白,为什么自己所推崇的爱情,在那个人眼里却一文不值?他心碎......
15.0万字8个月前
我在崖底捡的男主们都想赖上我 连载中
我在崖底捡的男主们都想赖上我
摘星搂
  付漫穿越到玄幻世界,本来老老实实当个天之骄子,却遇到了一个叫做【拯救天选之子】的系统,为了能够回到以前的世界,不得不斩断现世情缘,一心一......
8.3万字8个月前