数学联邦政治世界观
超小超大

实数八大定理的等价性证明 (3-1)

目录

引言 ▹

定理的内容 ▹

Cauchy收敛原理 ▹

单调有界原理 ▹

闭区间套定理 ▹

Dedekind分割定理 ▹

确界原理 ▹

有限覆盖定理 ▹

聚点原理 ▹

Bolzano-Weierstrass定理 ▹

等价性的证明 ▹

Cauchy收敛原理单调有界原理 ▹

单调有界原理⇒闭区间套定理 ▹

闭区间套定理⇒Dedekind分割定理 ▹

Dedekind分割定理⇒确界原理 ▹

确界原理⇒有限覆盖定理 ▹

有限覆盖定理聚点原理 ▹

聚点原理Bolzano-Weierstrass定理 ▹

Bolzano-Weierstrass定理⇒Cauchy收敛原理 ▹

引言

这里只选择其中一种环形路线证明八大定理的等价性。

定理的内容

Cauchy收敛原理

数列{αₙ} 收敛的充分必要条件为∀ε>0,∃N ∈ ℕ,∀m,n>N,|αₙ – αₘ|<ε

单调有界原理

单调有界数列必收敛.

闭区间套定理

lₙ=[αₙ,bₙ],l₁ ⊃ l₂ ⊃ l₃ ⊃ · · · ⊃ lₙ ⊃ · · ·,且 lim (αₙ – bₙ)=0,则存在唯一的实数 ↓

n→∞

+∞

ξ ∈∩lₙ ←

n=1

Dedekind分割定理

设A|B 是 ℝ 上的一个分割,则 A 有最大元和 B 有最小元有且仅有一个成立

确界原理

A ∈ ℝ 有上(下)界,则 A 必有上(下)确界.

有限覆盖定理

闭区间[α,b] 的任意一个开覆盖 A 都有有限子覆盖

聚点原理

ℝ 中有界的无穷集合必有聚点

Bolzano - Weierstrass定理

有界数列都有收敛的子列

等价性的证明

Cauchy收敛原理⇒单调有界原理

设{xₙ} 单调递增有上界,假设 {xₙ} 发散. 于是 ∃ε₀>0 对任意 N ∈ ℕ,存在 m,n>N

xₙ – xₘ>ε₀

由 n 的任意性可得一子列 {xₙₖ}

xₙₖ>xₙₖ₋₁+ε₀>· · ·>xₙ₁+(k – 1)ε₀ → ∞

与有界性矛盾

单调有界原理⇒闭区间套定理

lₙ=[αₙ,bₙ],l₁ ⊃ l₂ ⊃ l₃ ⊃ · · · ⊃ lₙ ⊃ · · ·

且 lim (αₙ – bₙ)=0

n→∞

于是{αₙ} 单调递增有上界, {bₙ} 单调递减有下界

于是lim αₙ,lim bₙ 存在,分别记为 A,B

n→∞ n→∞

因为lim (αₙ – bₙ)=0所以 A=B

n→∞

∀n,αₙ ≤ A=ξ=B ≤ bₙ,于是

+∞

ξ ∈ ∩[αₙ,bₙ]

n=1

闭区间套定理⇒Dedekind分割定理

设A|B 是 ℝ 的一个分割, A∪B=ℝ,A∩B=∅

∀α ∈ A,b ∈ B,α<b 取 α₁ ∈ A,b₁ ∈ B

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

星光星院 连载中
星光星院
熙安湘
在一个遥远的玄幻世界中,人类世界与魔法世界相互依存,维持着微妙的平衡。这个人类世界,有一个被称为“星光学院”的神秘地方。这里汇聚了来自各地拥......
5.4万字9个月前
闲暇随记 连载中
闲暇随记
溯屿陌
随便写写
0.8万字9个月前
叮!您的美男图鉴请签收! 连载中
叮!您的美男图鉴请签收!
来挽舟
有仕女图鉴,收集华夏上下五千年美人,蓁蓁是所有人公认的仕女图鉴第一美人有一天,蓁蓁被系统复活了,获得了一本美男图鉴,要穿梭三千世界收集美男既......
16.1万字9个月前
凡骨 连载中
凡骨
伊榆契
从我出生的那一刻就注定不平凡,我并不知道自己的父母是谁,听师傅说我是被捡来的,直到我十四岁那年,我找到了我的至亲,但我父母的消息却毫无音讯…......
0.6万字9个月前
十一日常记录站 连载中
十一日常记录站
冬池
移步林思祈
1.4万字9个月前
天云记 连载中
天云记
爱探险的云
女主的身世之谜
15.8万字9个月前