我们已经知道答案:它是δ函数。
盯着δ函数的筛选性质(方程 11),你应该认识到它是以卷积的形式写的。δ函数在将两个函数进行卷积时充当恒等算子。换句话说,δ函数有点像 1。
这种联系并非凭空而来。我们可以在傅里叶变换的背景中看到这种暗示。δ函数可以通过傅里叶变换表示。我们可以看到傅里叶表示的形式是取 1 的逆傅里叶变换:
1
δ(x – x')=── ∫∞₋∞ eⁱω(x – x') ↓
2π
1
dω=── ∫∞₋∞ 1 × eⁱω(x – x')dω
2π
方程 13
卷积和内积
在回到格林函数之前,我上面提到,我们的类比到正常乘法的限制是缺乏明确定义的逆。我们可以通过卷积最常见的应用“移动平均”或低通滤波器来了解这一点。
例如,让我们拿一张图片并与高斯函数进行卷积。
卷积
→
使用高斯卷积对金毛犬进行低通滤波
对图像进行二维卷积通常会使其明显模糊。消除一些模糊并非不可能(反卷积是图像处理中的一个老话题),在实践中,卷积的滤波效果将高分辨率信息映射为零。在线性代数的语言中,存在非平凡的零空间,所以这个运算是不可逆的。
虽然它不是数字正常乘积的完美类比,但卷积确实符合向量内积的所有条件。在不将这变成一整套线性代数课程的情况下,内积是我们三维空间中常规向量点积的概括。
u · v=uₓυₓ+uyυy+uᴢυᴢ=|u| |v| cos θ
方程 14
其中 θ 是向量 u 和 v 之间的角度。
• 在普通的(3D)空间中,向量只是箭头。它们指向一个方向并具有长度,我们称之为大小。分量是指向上或向下、向左或向右等方向的分量。
内积只是一个规则,或一个映射,用来将两个向量映射到一个数字。通过方程 14,规则是取每个方向(x,y,z)的分量,将这些分量相乘并求和。
现在将其与方程 12 中卷积的定义比较,我们可以看到卷积所做的事情相同,只是使用的是函数:我们在每个点乘以两个函数并求和。更一般地,我们定义函数 f 和 h 之间的内积:
〈f,h〉=∫∞₋∞ f(x)h(x)dx
方程 15
卷积实际上只是函数向量空间中的内积,其中一个函数按我们选择的量进行了移位。或者你可以这样说,卷积代表了与一些函数集相关的一组内积,这些函数通过移位函数参数联系起来。
现在在普通的 3D 空间中,我们可以将任何向量表示为三个单位向量(每个方向长度为 1 的向量)的和,其中每个方向是一个维度。我们说这些向量跨越了整个向量空间,这意味着我们可以写出任何向量:
v=υᴢˆX+υyˆy+υᴢˆZ
数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。