数学联邦政治世界观
超小超大

SEP:阿尔希塔斯(三) (6-1)

阿尔希塔斯的解法被恰当地誉为“所有解法中最杰出的”,是“三维空间中的大胆构造”(Heath 1921,246);Mueller 称其为“空间想象力的杰作”(1997,312 注 23)。我们之所以能够了解阿尔希塔斯的解法,要归功于欧托基乌斯,他在公元 6 世纪收集了大约 11 种解法,作为他对阿基米德《论球体与圆柱体》第二卷的注释的一部分。欧托基乌斯关于阿尔希塔斯解法的资料最终来自亚里士多德的学生欧德谟,后者在公元前 4 世纪后期写了一部几何学史。这个解法很复杂,这里不可能一步一步地讲解(关于这个解法的详细论述,见 Huffman 2005,342-401)。阿尔希塔斯的做法是构造一系列四个相似三角形(见下图 1),然后证明这些边是成比例的,使得 AM : AI :: AI : AK :: AK : AD,其中 AM 等于原始立方体的边长 (G),而 AD 是 AM 的两倍。因此,体积是以 AM 为边的立方体的两倍的立方体,应该以 AI 为边来构造。真正的困难在于构造这四个相似三角形,其中给定的原始立方体的边长和长度是该边长两倍的线段,是相似三角形中的两条边。构造这些三角形的关键点 K,被确定为两个旋转平面图形的交点。第一个图形是一个半圆,它垂直于圆 ABDZ 的平面,从直径 AED 开始,在点 A 保持不动的情况下,旋转到位置 AKD。第二个图形是三角形 APD,它从圆 ABDZ 的平面向上旋转到位置 ALD。当这两个图形中的每一个旋转时,它都会在一个半圆柱体的表面上画出一条线,该半圆柱体垂直于 ABDZ 的平面,并以 ABD 为底面。这种构造的大胆和想象力在于,设想旋转的半圆在半圆柱体表面上画出的线与旋转的三角形在同一表面上画出的线,在点 K 相交。我们根本不知道是什么促使阿尔希塔斯做出了这种惊人的空间想象力的壮举,以便构造出边长成适当比例的三角形。关于最近试图将阿尔希塔斯的解法置于他那个时代的数学背景下,并使其不那么“神奇”的尝试,见 Menn 2015。

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

赛罗的哥哥赛伊 连载中
赛罗的哥哥赛伊
塞少
赛伊被流放以后的故事,赛伊去过地球去过幻星(私设)遇到了师傅和师兄
2.1万字11个月前
剧毁三观我不怕,爆打主角我最棒 连载中
剧毁三观我不怕,爆打主角我最棒
懒番茄
沙雕女江荷一觉睡醒穿进霸总小说,看她怎么拳打主角,打着打着才发现全书怎么她最吊了,就连真大佬都让位给她了
0.6万字11个月前
幻城之岚裳 连载中
幻城之岚裳
常安90137
讲得是岚裳是护灵之命为守护三界的生灵而献祭魂灵和樱空释经历三世情劫
3.6万字11个月前
狼王梦—重生夺王 连载中
狼王梦—重生夺王
风火小哪吒
紫岚、黑仔和蓝魂儿重生了,而且要成为狼王,他们成功了吗?
1.0万字11个月前
惜渡缘 连载中
惜渡缘
一溪云
【已签约】本是姻缘天注定,却成正邪两不容。仙佛魔三道相争,薛梨是证仙道,证魔道,还是证佛道?陈幼卿本应为仙,后故为佛,誓而为魔,又应走向何途......
12.4万字11个月前
航猪意外黑化 连载中
航猪意外黑化
芳心和三郎
妈妈说过,透剧的不是好孩子。
1.2万字11个月前