数学联邦政治世界观
超小超大

SEP:阿尔希塔斯(三) (6-1)

阿尔希塔斯的解法被恰当地誉为“所有解法中最杰出的”,是“三维空间中的大胆构造”(Heath 1921,246);Mueller 称其为“空间想象力的杰作”(1997,312 注 23)。我们之所以能够了解阿尔希塔斯的解法,要归功于欧托基乌斯,他在公元 6 世纪收集了大约 11 种解法,作为他对阿基米德《论球体与圆柱体》第二卷的注释的一部分。欧托基乌斯关于阿尔希塔斯解法的资料最终来自亚里士多德的学生欧德谟,后者在公元前 4 世纪后期写了一部几何学史。这个解法很复杂,这里不可能一步一步地讲解(关于这个解法的详细论述,见 Huffman 2005,342-401)。阿尔希塔斯的做法是构造一系列四个相似三角形(见下图 1),然后证明这些边是成比例的,使得 AM : AI :: AI : AK :: AK : AD,其中 AM 等于原始立方体的边长 (G),而 AD 是 AM 的两倍。因此,体积是以 AM 为边的立方体的两倍的立方体,应该以 AI 为边来构造。真正的困难在于构造这四个相似三角形,其中给定的原始立方体的边长和长度是该边长两倍的线段,是相似三角形中的两条边。构造这些三角形的关键点 K,被确定为两个旋转平面图形的交点。第一个图形是一个半圆,它垂直于圆 ABDZ 的平面,从直径 AED 开始,在点 A 保持不动的情况下,旋转到位置 AKD。第二个图形是三角形 APD,它从圆 ABDZ 的平面向上旋转到位置 ALD。当这两个图形中的每一个旋转时,它都会在一个半圆柱体的表面上画出一条线,该半圆柱体垂直于 ABDZ 的平面,并以 ABD 为底面。这种构造的大胆和想象力在于,设想旋转的半圆在半圆柱体表面上画出的线与旋转的三角形在同一表面上画出的线,在点 K 相交。我们根本不知道是什么促使阿尔希塔斯做出了这种惊人的空间想象力的壮举,以便构造出边长成适当比例的三角形。关于最近试图将阿尔希塔斯的解法置于他那个时代的数学背景下,并使其不那么“神奇”的尝试,见 Menn 2015。

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

微雨微凉 连载中
微雨微凉
南窗飘雪
女频喜刀,作者学生,文笔不好,不喜勿喷,出门不送。
0.7万字4周前
仙尊被魔尊高调掳走后 连载中
仙尊被魔尊高调掳走后
赵琅暥
点新书《魔尊,你家仙尊来娶你了》高能场面随时有。千帆历尽,归来,不负你魔尊和仙尊一同下界历劫,轮回后,一同归位,不过几天魔尊上天界,求爱不成......
27.2万字4周前
焚天次元 连载中
焚天次元
小思詩
共三个篇章,多个支线MP番外,全文预计45万字低维篇(完结)『1∽155』《“曙光”VS“梦墟”》次元对撞的结局,无非是彻底毁灭!可凭什么曙......
17.6万字4周前
千古玦尘——续写 连载中
千古玦尘——续写
兮绾绾
凡人有难求之于神,那么神有难,又该如何?白晚:对不起,天启,我有…我有自己的责任,这次……还是没能…伴你左右……天启:责任,又是责任,为什么......
1.7万字4周前
无限流:木偶牵线 连载中
无限流:木偶牵线
逃更
沙雕网文!!邱故:“在一起,有什么好处?”礼念:“(真情实意)我会做饭。”邱故:“然后呢?”礼念:“我可以带你赢。”邱·毫不犹豫·故:“哥哥......
8.4万字4周前
我们不止一世情 连载中
我们不止一世情
源雨星梦
轮回转世
11.7万字4周前