数学联邦政治世界观
超小超大

广义罗尔定理 (2-2)

因为sec² t₀ ≠ 0,所以f'(tan t₀)=0,故取ξ=tan t₀ 即可.

(3)若α有限,b=+∞,令G(t)=f(tan t),t ∈

π

(arctan α,─)即可.

2

(4)若α=–∞,b有限,类似(3)的讨论,存在ξ ∈ (–∞,0) 使得 f'(ξ)=0. ◾

注 此结果可看成 Rolle 定理的推广.

特例(北京师范大学) 设 f(x) 在(0,+∞) 中任意点有有限导数,且

lim f(x)=lim f(x)=A.

x→∞⁺ x→+∞

证明:存在ξ ∈ (0,+∞)使得f'(ξ)=0.

以上的两个问题是常见的罗尔定理的证明题,其中第一个主要是构造函数,通常结合自然常数e的ax次方,进行乘除运算,以便导函数的结果可以靠近题目。第二题是罗尔定理的一种推广形式。考虑到函数极限,从而补充函数定义。

例1.设函数f(x)二阶可导,f(0)<0,f(1)=0,方程f(x)=0在(0,1)有实根x₀,当 x ∈ (x₀,l),有f''(x)>0,证明:存在 ξ ∈(0,1),使得f''(ξ)=0.

例 2.设函数f(x)在[0,+∞)连续,(0,+∞)可导,且f(0)=0,lim f(x)=0,

x→∞

证明:存在ξ ∈(0,+∞),使得f'(ξ)=0。

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

归魂渊 连载中
归魂渊
冰霜之间
有花无叶,有叶无花,永生永世,无法相见,生生不息,轮回不止,悲剧之爱,曼珠沙华。
3.8万字11个月前
时光机里的故事 连载中
时光机里的故事
清风吹晓梦
回忆过去,你会发现你有很多机会没有把握;畅想未来,你会想到还有很多事情需要你做
1.8万字11个月前
战神大人只爱我 连载中
战神大人只爱我
上姑苏
众人都说她是魔君转世,殊不知她与魔君乃是一体两魂同生同灭。他是天界战神,战无不胜,攻无不克,魔君是他的宿敌,她却是他放不下的执念。“子清为何......
27.6万字11个月前
美羊羊的恋你青丝 连载中
美羊羊的恋你青丝
新年一
三个男主
0.3万字11个月前
重生之我在异世开店铺 连载中
重生之我在异世开店铺
墨香笔落
这个是我的脑洞,还有一些梦境,试试能不能写出来。
8.1万字11个月前
第一异技师(一)大烟石之战 连载中
第一异技师(一)大烟石之战
薇伊十三号
(已完结)这是一个异技的世界,每天充满着挑战,与敌人的战斗中若战败元气大伤,若战胜折翼损爪。在此时,世界成立了一个组织,为了无辜人民,他们又......
15.1万字11个月前