数学联邦政治世界观
超小超大

广义罗尔定理 (2-2)

因为sec² t₀ ≠ 0,所以f'(tan t₀)=0,故取ξ=tan t₀ 即可.

(3)若α有限,b=+∞,令G(t)=f(tan t),t ∈

π

(arctan α,─)即可.

2

(4)若α=–∞,b有限,类似(3)的讨论,存在ξ ∈ (–∞,0) 使得 f'(ξ)=0. ◾

注 此结果可看成 Rolle 定理的推广.

特例(北京师范大学) 设 f(x) 在(0,+∞) 中任意点有有限导数,且

lim f(x)=lim f(x)=A.

x→∞⁺ x→+∞

证明:存在ξ ∈ (0,+∞)使得f'(ξ)=0.

以上的两个问题是常见的罗尔定理的证明题,其中第一个主要是构造函数,通常结合自然常数e的ax次方,进行乘除运算,以便导函数的结果可以靠近题目。第二题是罗尔定理的一种推广形式。考虑到函数极限,从而补充函数定义。

例1.设函数f(x)二阶可导,f(0)<0,f(1)=0,方程f(x)=0在(0,1)有实根x₀,当 x ∈ (x₀,l),有f''(x)>0,证明:存在 ξ ∈(0,1),使得f''(ξ)=0.

例 2.设函数f(x)在[0,+∞)连续,(0,+∞)可导,且f(0)=0,lim f(x)=0,

x→∞

证明:存在ξ ∈(0,+∞),使得f'(ξ)=0。

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

复苏的吸血鬼家族 连载中
复苏的吸血鬼家族
十月予安
美丽的吸血鬼公主和王子的故事
1.3万字1年前
精神状态怎么样? 连载中
精神状态怎么样?
慕斯比比
灵光乍现!神女闪亮登场!战神瑟瑟发抖!如果我没说错的话,那就是没说错的话。
7.1万字1年前
尘时愿 连载中
尘时愿
作者一肖
敌国皇子与丞相之女从猜疑、互相试探到互相扶持,完成共同心愿的故事
16.5万字1年前
一本看哭人的小说 连载中
一本看哭人的小说
啊,天才!
----回忆里永远的End永恒----
6.9万字1年前
无限:山海地图持续为您导航 连载中
无限:山海地图持续为您导航
隔岸观柏
【无cp-无限流(微微恐)-女强-异能】黎听余自诩倒霉蛋但直到她收到了山海地图的短信后她才发现——自己可以更倒霉*自从被莫名其妙拉进副本后黎......
0.6万字1年前
三眼倾城 连载中
三眼倾城
戬晓曦
三足鼎立,曦奉、曜越、赤陵,三个国家互结互斗。蓝缡、悟空、杨戬,化身为各国国君,展开了一场连姻浪漫故事……
1.1万字1年前