数学联邦政治世界观
超小超大

广义罗尔定理 (2-1)

数小成 数小成

微分中值定理-罗尔定理

罗尔定理定义:

1⁰ Rolle 定理 设f(x) 满足

(i) f(x) ∈ C[α,b];

(ii)f(x)在(α,b)内可导;

(ii) f(α)=f(b),

则至少存在 ξ ∈ (α,b)使得f'(ξ)=0.

注 (i)定理的条件只是充分条件.

(ii)定理的几何意义就是 (α,b)的某点存在水平的切线.

(iii) 此定理可以用 Fermat 定理证明,

(iv) 应用此定理判定方程的根 (连续函数的介值定理也常用来判定方程的根). 作为 Rolle定理的推广,有下面结果.

命题 设f(x)在(α,b)(有穷或无穷区间)中任意点有有限导数,且 lim f(x)=lim,f(x)

x→∞ x→∞

证明存在 ξ ∈ (α,b) 使得f'(ξ)=0.

罗尔定理的应用-函数零点问题

一般的函数的零点问题是指不需要求得原函数,在罗尔定理的应用中,通常指零点存在问题,该问题又可以细分为:函数的零点问题,函数的导函数零点问题(往往结合拉格朗日中值定理以及函数单调性)。函数的零点问题也是考研常见的问题。

2. 设f(x) 在 [α,b] 上连续,在 (α,b) 内可导,且f(α)<0,f(b)<0,又存在 c ∈ (α,b),f(c)>0.证明:存在 ξ ∈(α,b)使得f(ξ)+f'(ξ)=0.

证 令g(x)=f(z)eˣ,由条件

g(α)<0, g(c)>0, g(b)<0.

由零点存在定理知存在 x₁ ∈(α,c),x₂ ∈(c,b)使得

g(x₁)=g(x₂)=0,

由Rolle 定理知存在 ξ ∈ (x₁,x₂) ⊂ (α,b)使得

g'(ξ)=eξ[f(ξ)+f'(ξ)]=0,

所以f(ξ)+f'(ξ)=0. ◾

注 令g(x)=f(x)e⁻ˣ 可得到 f(ξ) – f'(ξ)=0.若令g(x)=eʰ⁽ˣ⁾f(x) 可得到更一般的结果.

3. 设f(x) 在 (α,b)(有穷或无穷区间) 中任意点有有限导数。且 lim f(x) = lim f(x).

x→α⁺ x→b⁻

证明:存在 ξ ∈ (α,b)使得f'(ξ)=0.

证 (1)当(α,b)为有限区间,设c=lim f(x)=lim f(x),令 x→α⁺

x→b⁻

f(x),x ∈ (α,b),

F(x) = {

c, x=α 或 x=b.

则F(x)在[α,b]内连续,且在(α,b)内可导,F(α)=F(b),由Rolle 定理知存在 ξ ∈(α,b) 使得F'(ξ)=f'(ξ)=0.

(2)若α=–∞,b=+∞,可设x=tan t,t ∈

π π

(– ─,─)

2 2

,令G(t)=f(tan t),

π π

t ∈(– ─,─)

2 2

π π

,由条件知存在to E(– ─,─)使得

2 2

G'(t₀)=f'(tan t₀) sec² t₀=0.

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

快穿之我在游戏里当大佬 连载中
快穿之我在游戏里当大佬
子非珏
南宫陌离和君沐泽从小是青梅竹马穿越到了KW游戏世界里,一路上一起和伙伴们破案打闹,最终得到了真相……(南宫陌离有一个隐藏身份会在后期揭开他字......
0.4万字1年前
暗与明的纠纷 连载中
暗与明的纠纷
黑水鸭和白水鹅
明暗之愁到底谁错谁对
1.6万字12个月前
星系王国战争 连载中
星系王国战争
虎崎 👑🐯
在一个遥远的星球上,这里有一个很强大的国家,雄鹰帝国。他们骁勇善战,领土面积非常广阔。鹰王为了稳定统治,在自己的疆土上分封了许多邦国,他们近......
0.6万字12个月前
属于她的黑龙 连载中
属于她的黑龙
是条黑长虫龙
一个名叫龙幻界的地方她与她相遇,也和她相爱了,没人会阻止,因为她是能让世界毁灭的黑龙,她是唯一能驾驭的了黑龙的御兽师,她们创造了龙幻界一个又......
0.7万字12个月前
雪霜寒舞 连载中
雪霜寒舞
云鹤芽
浩女冬男
5.5万字12个月前
天下为倾 连载中
天下为倾
一夜千倾
21世纪的少女穿越异世收美男(划掉)神器,神兽,偶然间觉醒,发现自己是时间守护者?璇机篇(已开启)神界篇(侍开启)宇宙篇(待开启)一女N男女......
4.9万字12个月前