数学联邦政治世界观
超小超大

【沙法列维奇-泰特猜想】(一) (5-1)

目录

参考论文情形 ▹

【GPT-40】 ▹

【通义千问】 ▹

【Claude 3.5 Sonnet】 ▹

【智谱清言】 ▹

【通义千问】 ▹

【Kimi】 ▹

【智谱清言】 ▹

泰特猜想

关于图的着色的一个著名猜想

泰特猜想(Tait's conjecture)是关于图的着色的一个著名猜想,3正则图的3边正常着色称为泰特着色。泰特猜想:每个简单3正则3连通平面图都有泰特着色,它与四色猜想等价,泰特(P.G.Tait)曾根据“每个3正则3连通平面图都是哈密顿图”的错误假设,给出了四色猜想的一个“证明”,塔特(W.T.Tutte)于1946年构造了一个3正则3连通的平面图,在这图上不存在哈密顿图,这个图称为塔特图,由此推翻了泰特于1880年给出的四色猜想的“证明”[1]。

中文名

泰特猜想

外文名

Tait's conjecture

所属学科

数学

所属问题

组合学(图与超图)

简介

关于图的着色的一个著名猜想

基本介绍

对于复阿贝尔簇 A=Cᵍ/L,它的子群A[n]={α ∈ A|nα=0} 同构于加法群

1

─L/L ≅ (Z/nZ)²ᵍ.

n

如果A是定义在数域K上,将A[n]中所有点的坐标添加到K中,形成K的一个扩域K⁽ⁿ⁾ ,K⁽ⁿ⁾ 是K的代数闭包量Kαᶜ 的子域。伽罗瓦群G=Gαl (Kαᶜ/K)作用在子群A[n]上,给出G在GL₂g (Z/nZ)上的伽罗瓦表示,现在取素数l ,则有自然满同态 A[lᵐ⁺¹] → A[lᵐ],α ↦ lα,于是有极限 Tₗ (A)=lim A[lᵐ],

m→∞

这叫作阿贝尔簇A的泰特模。由极限过程知,Tₗ (A) 群同构于 lim (Z/lᵐ Z)²ᵍ=Zₗ²ᵍ,其中Zₗ 是1-adic整数环。群G通过取极限作用在Tₗ (A)上,从而给出G在GL₂g (Zₗ) 中的1-adic表示。进而,若B是定义在K上的另一个阿贝尔簇,则所有从A到B的群同态形成加法群 Hom(A,B),而与G作用可交换的从Tₗ (A) 到 Tₗ (B)的群同态形成群 Homɢ (Tₗ (A),Tₗ (B)),泰特猜想是说:

(1)G到 上的1-adic表示 G → GL₂g (Zₗ) 是半单的;

(2)有群同构 Hom (A,B) ⨂ Zₗ ≅ Homɢ (Tₗ(A),Tₗ(B)).

每个同态φ:A → B自然诱导出泰特模之间的一个同态 Tₗ(φ):Tₗ (A) → Tₗ (B),而猜想(2)本质上相当于说: φ 由Tₗ (φ) 所决定,即阿贝尔簇之间的同态由它在泰特模上的作用所决定,并且Tₗ (A)到 Tₗ (B)的每个G-同态都是由某个 φ:A → B 诱导出来的[2] 。

泰特猜想的证明

法尔廷斯首先证明了泰特猜想,然后由泰特猜想再推出关于阿贝尔簇的沙法列维奇猜想,这也就证明了关于曲线的沙法列维奇猜想和莫代尔猜想。

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

一些杂 连载中
一些杂
无机言
没总和就孩子写写堆着玩的
13.3万字9个月前
猫小九和朋友们的搞笑日常 连载中
猫小九和朋友们的搞笑日常
顾泽素
猫小九生活之间的事
1.3万字9个月前
被强制替身的永生花 连载中
被强制替身的永生花
刺客飞船英格拉
他曾是一朵绚烂的永生花。因为清醒于世间而永生。他曾也幻想过美好的未来,但世间的污浊另清醒的他厌恶自己、厌恶一切。他以自杀的方式结束了一个又一......
13.1万字9个月前
重生后我终于赶上你了 连载中
重生后我终于赶上你了
长飞雁
(已完结)唐无味是唐氏集团的大小姐,在十八岁那年就被囚禁在年锦墨家,她不知道为什么,但是她渴望自由,她想回家。她不知道他是去那么危险的地方。......
20.7万字9个月前
弱水三千:神凰寻爱记 连载中
弱水三千:神凰寻爱记
小皮筋儿
她是弱水的一代女君,姓苏名繁,受百姓爱戴,人人尊称一声“繁姑姑”,殊不知她的真身是绝世神凰,她是上古神族后裔,血统高贵。  偏偏有作死的北冥......
22.8万字9个月前
我的远古小娇夫 连载中
我的远古小娇夫
渺渺不可见
什么是咸鱼?周渺渺这样要才没才,要貌没貌,要钱没钱的“三无产品”算不算?身为新时代优秀的大三医学生,周渺渺就是混吃等死的代言人。然而,在一次......
7.1万字9个月前