数学联邦政治世界观
超小超大

【沙法列维奇-泰特猜想】(一) (5-1)

目录

参考论文情形 ▹

【GPT-40】 ▹

【通义千问】 ▹

【Claude 3.5 Sonnet】 ▹

【智谱清言】 ▹

【通义千问】 ▹

【Kimi】 ▹

【智谱清言】 ▹

泰特猜想

关于图的着色的一个著名猜想

泰特猜想(Tait's conjecture)是关于图的着色的一个著名猜想,3正则图的3边正常着色称为泰特着色。泰特猜想:每个简单3正则3连通平面图都有泰特着色,它与四色猜想等价,泰特(P.G.Tait)曾根据“每个3正则3连通平面图都是哈密顿图”的错误假设,给出了四色猜想的一个“证明”,塔特(W.T.Tutte)于1946年构造了一个3正则3连通的平面图,在这图上不存在哈密顿图,这个图称为塔特图,由此推翻了泰特于1880年给出的四色猜想的“证明”[1]。

中文名

泰特猜想

外文名

Tait's conjecture

所属学科

数学

所属问题

组合学(图与超图)

简介

关于图的着色的一个著名猜想

基本介绍

对于复阿贝尔簇 A=Cᵍ/L,它的子群A[n]={α ∈ A|nα=0} 同构于加法群

1

─L/L ≅ (Z/nZ)²ᵍ.

n

如果A是定义在数域K上,将A[n]中所有点的坐标添加到K中,形成K的一个扩域K⁽ⁿ⁾ ,K⁽ⁿ⁾ 是K的代数闭包量Kαᶜ 的子域。伽罗瓦群G=Gαl (Kαᶜ/K)作用在子群A[n]上,给出G在GL₂g (Z/nZ)上的伽罗瓦表示,现在取素数l ,则有自然满同态 A[lᵐ⁺¹] → A[lᵐ],α ↦ lα,于是有极限 Tₗ (A)=lim A[lᵐ],

m→∞

这叫作阿贝尔簇A的泰特模。由极限过程知,Tₗ (A) 群同构于 lim (Z/lᵐ Z)²ᵍ=Zₗ²ᵍ,其中Zₗ 是1-adic整数环。群G通过取极限作用在Tₗ (A)上,从而给出G在GL₂g (Zₗ) 中的1-adic表示。进而,若B是定义在K上的另一个阿贝尔簇,则所有从A到B的群同态形成加法群 Hom(A,B),而与G作用可交换的从Tₗ (A) 到 Tₗ (B)的群同态形成群 Homɢ (Tₗ (A),Tₗ (B)),泰特猜想是说:

(1)G到 上的1-adic表示 G → GL₂g (Zₗ) 是半单的;

(2)有群同构 Hom (A,B) ⨂ Zₗ ≅ Homɢ (Tₗ(A),Tₗ(B)).

每个同态φ:A → B自然诱导出泰特模之间的一个同态 Tₗ(φ):Tₗ (A) → Tₗ (B),而猜想(2)本质上相当于说: φ 由Tₗ (φ) 所决定,即阿贝尔簇之间的同态由它在泰特模上的作用所决定,并且Tₗ (A)到 Tₗ (B)的每个G-同态都是由某个 φ:A → B 诱导出来的[2] 。

泰特猜想的证明

法尔廷斯首先证明了泰特猜想,然后由泰特猜想再推出关于阿贝尔簇的沙法列维奇猜想,这也就证明了关于曲线的沙法列维奇猜想和莫代尔猜想。

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

我在修仙界里内卷成神 连载中
我在修仙界里内卷成神
风竹肆
[神级空间+团宠+强强联合+后期成神]一个是神界第一美男,拥有绝世俊美无双的光明至高之神仙帝一个是魔界第一美男子,拥有绝色妖魅,能魅惑世间的......
1.6万字5个月前
那些想做却又不敢做的事 连载中
那些想做却又不敢做的事
菜菜鸭hh
传闻中有一家豪门,有一位很抽象大小姐和很“惨”的大少爷,还有很宠爱大小姐的父母(前提前提前提,在看之前请把脑子寄存在此处,不喜欢误喷,谢谢!......
0.2万字5个月前
暗黑十三星 连载中
暗黑十三星
夏咏初
蛇夫把她的脸按在地上摩擦,她原地发疯:“我既没杀你爸又没杀你妈,你凭什么杀我!”起因是星空破碎,蛇夫带着八十七个本体造反。无奈之下,天蝎坠落......
63.4万字5个月前
时之痕 连载中
时之痕
无嵇
一切都是虚幻么?为何悲伤如此刻骨铭心?都是真的么?为何一切变得遥不可及?“你是谁?”“你还存在么?”“我是谁?你们又是谁?”这到底是结束还是......
9.0万字5个月前
蜀山战纪虽死不悔之双生姐妹花 连载中
蜀山战纪虽死不悔之双生姐妹花
战颖小姐
《浅笑繁华陌路,安然似颖水流年》
1.7万字5个月前
咬一口,三水故事 连载中
咬一口,三水故事
开局三滴水
小众甜文收集地,文都是网上的,侵权删鸭~✧*。٩(ˊωˋ*)و✧*。(别给我这本书送花哦)
22.7万字5个月前