数学联邦政治世界观
超小超大

数学分支全部代数化 (4-1)

Gelfand曾经说过“所有的数学都是某种表示论”(原话: I used to say: "Everything is Representation Theory". Now I say: "Nothing is Representation Theory".这里我断章取义,只考虑前半句话hhh)与其把这句话看成一个结论,不如看成一个目标,就是把尽可能多的数学代数化,放进表示论的框架里。我一直非常喜欢这样的数学,恰好有一个数学分支与这个目标密切相关,那就是非交换几何(很大一部分和算子代数重叠)。鉴于(我,非交换几何)同伦等价于(叶公,龙),我只能谈谈自己非常粗浅的理解,权当抛砖引玉,欢迎评论指正。

非交换几何是一个非常庞大、内容非常丰富的数学分支,但是一个基本的想法就是把几何对象代数化,然后研究它的非交换推广。我觉得这个学科的一个起源是量子力学,或者说是量子化的想法:一个经典力学模型包含一个辛(或者更一般,柏松)流形M 作为相空间,可观测量就是相空间上的光滑函数,组成一个柏松代数 C∞ (M) 。一个量子力学模型包含一个希尔伯特空间 H ,可观测量是 H 上的自伴算子,组成一个 C*-代数 A (这里忽略了一些细节)。我们说 A 是 M 的一个量子化,如果存在代数同态 C∞ (M) → A,把柏松括号映射成交换子。在这个过程中,一个交换的代数变成了一个不交换的代数,所以数学上一般的把交换变成不交换的过程都叫做量子化。

M 上的很多几何(或者力学系统的动力学特性)可以通过 C∞ (M) 上的柏松括号来刻画,甚至很多构造都不需要流形 M 出现,只需要一个一般的柏松代数都可以做,这就反映了非交换几何的想法:用代数的信息刻画几何对象,然后研究它的非交换推广。下面我们将会给出一些基本的例子。

一:拓扑

紧Hausdorff空间在一般拓扑中是非常基本的研究对象,想必大家都不会陌生。那么,令X 为一个紧Hausdorff拓扑空间,如何用代数的信息来刻画 X 呢?

在很多数学分支里面,或多或少都会看见如下的对偶性:

【几何对象(X )】对偶于【代数对象( X 上的某些“函数”)】

我们试图用这个理念来代数化X 。令 A=C 为 X 上全体连续函数组成的复线性空间,它关于函数的逐点相乘构成一个交换 ℂ-代数。但是这样的信息并不足以刻画 X 的拓扑,我们需要一些更“精细”的信息。于是对任意 f ∈ A ,定义 f 的范数 ||f|| 为 |f| 在 X 上的最大值,定义 f 的 *-运算 f* 为 f 的复共轭。那么 A 关于 || · || 和 * 构成一个交换含单位 C*-代数。我在这里不想回顾 C*-代数的定义——无非就是一个 ℂ-代数带上范数和 *-运算,满足一些公理。下面的定理说明, C(X) “完全决定”了 Ⅹ ,也就是说, C(X) 作为交换含单位 C*-代数,是 X 的合格的代数化。

【Gelfand-Naimark定理】 反变函子 X ↦ C(X) 给出了范畴 { 紧Hausdorff空间,关于连续映射 }ᵒᵖ 和范畴 { 交换含单位 C*-代数,关于 *-同态 } 的等价。

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

落魄小宗竟全是大佬 连载中
落魄小宗竟全是大佬
栖休安
白漠渴望得道长生于是她来到来了一个小宗门(排雷:女主傻白甜,文中有多对楠楠副cp,全员be)
8.5万字9个月前
开心超人之暗魔和小心的恋爱 连载中
开心超人之暗魔和小心的恋爱
夜梦韩
作者:本人有一些觉得,暗魔好像和小心很配哦!伽罗:作者,纳命来!作者:啊啊啊啊啊啊!暗魔:伽罗,你的小心归我啦!伽罗:暗魔!暗魔:啊啊啊啊啊......
2.3万字8个月前
快穿之系统带我攻略美男(上) 连载中
快穿之系统带我攻略美男(上)
软萌糖果喵
[韶华文社:长风十里,韶华不负]她爱的人将她逼死,她意外到达另一个世界,并且绑定了一个攻略系统,系统励志要她攻略遍天下美男,不光如此,还要穿......
41.5万字8个月前
重生之随身携带锦鲤空间 连载中
重生之随身携带锦鲤空间
想睡个整觉
生娃以后的乔荞多久没睡过一个整觉了,乔荞已经忘记了,虽然老公帮忙带娃,婆婆资金帮助,但是带娃的哭闹和经济的压力依旧让乔荞苦不堪言。幸运的是老......
6.4万字8个月前
三生三世:童梦儿 连载中
三生三世:童梦儿
秦伊染_
童梦儿
3.2万字8个月前
成长道路的陪伴 连载中
成长道路的陪伴
醉绕心弦夕
捡到一只猫
4.1万字8个月前