数学联邦政治世界观
超小超大

无限Galois理论 (2-1)

在无限扩张的时候,有限Galois对应定理是不成立的,为此我们利用拓扑推广Galois对应定理

先引入拓扑

Def 1

设G=Gal(Ω/k),其中 Ω/k 为Galois扩张

∀σ ∈ G,对所有有限子Galois扩张 K/k ,陪集 σGal(Ω/K) 组成 σ 的邻域基‬

称此拓扑为Krull拓扑

定义G × G → G , (σ,τ)↦στ

G → G,σ↦σ⁻¹

为连续映射,则G 为拓扑群

我们来研究G 的拓扑性质

Prop 2

G 紧且Hausdorff

pf

任取互异的σ ,τ ∈ G,存在有限Galois子扩张 K/k 使得 σ[ᴋ ≠ τ] ᴋ

于是σGal(Ω/K) ≠ τGal(Ω/K) 且 σGal(Ω/K) ∩ τGal(Ω/K)=∅

于是G Hausdorff

考虑映射

h:G → ΠᴋGal(K/k)

σ↦Πᴋσ|ᴋ

此处K/k 取遍所有有限Galois子扩张

而Gal(K/k) 离散,于是为紧群,于是 ΠᴋGal(K/k) 紧

由于∀K,σ|ᴋ=1 ⇔ σ=1,

于是h 为单射

集族Πᴋ≠ᴋ₀Gal(K/k) × {ˉσ} 构成 ΠᴋGal(K/k) 的子基‬

其中K₀/k 取遍有限子扩张, ˉσ ∈ Gal(K₀/k)

取上述集族中的一个记为U

若σ 为 ˉσ 的原像,则 h⁻¹(U)=σGal(Ω/K₀)

于是h 连续

而h(σGal(Ω/K₀)=h(G)∩U

于是h 开,于是 h 为同胚‬

下证h(G) 在紧集 ΠᴋGal(K/k) 中闭

任取两个k 的有限子Galois扩张 L' ⊇ L

考虑

Mʟ'/ʟ={Πᴋσᴋ∈ΠᴋGal(K/k)|σʟ'|ʟ=σʟ}

而h(G)=∩ʟ' ⊇ ʟMʟ'/ʟ

于是只需说明Mʟ'/ʟ 闭

若Gal(L/k)={σ₁,. . .,σₙ}, Sᵢ ⊂ Gal(L'/k) 为 σᵢ 在 ʟ' 上的扩张(延拓)

Mʟ'/ʟ=∪ⁿᵢ₌₁ (Πᴋ≠L,ʟ'Gal(K/k) × Sᵢ × σᵢ)

于是Mʟ'/ʟ 闭

下面推广Galois对应定理

Thm 3

设Ω/k 为Galois扩张,则

K↦Gal(Ω/K)

为子扩张K/k 与 Gal(Ω/k) 的闭子群的双射

Gal(Ω/k) 的开子群对应有限子扩张

pf

所有Gal(Ω/k) 的开子群也是闭的,因为作为其开陪集的补集,于是闭

若K/k 为有限子扩张,则 Gal(Ω/K) 开,因为 ∀σ ∈ Gal(Ω/K)

σGal(Ω/N) ⊆ Gal(Ω/K)

其中N 为 k 在 K/k 中的正规闭包‬

若K/k 为任意子扩张,则

Gal(Ω/K)=∩ᵢ Gal(Ω/Kᵢ)

其中Kᵢ/k 取遍 K/k 的有限子扩张

于是Gal(Ω/K) 闭

由于K 为 Gal(Ω/K) 的固定域,于是 K↦Gal(Ω/K) 单

为了说明满,我们证明任意Gal(Ω/k) 的闭子群 H

有H=Gal(Ω/K) ,其中 K 为 H 的固定域

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

作者的十六个幻想—第一个 连载中
作者的十六个幻想—第一个
可爱滴佳7
原名“梦境十六转”,别名“oc设定集”作者小学生文笔,不喜勿喷,谢谢
0.2万字1个月前
将错就错—— 连载中
将错就错——
How are you?
0.5万字4周前
平生回忆录 连载中
平生回忆录
CP界泥石流·微笑病毒(毕业狂欢)
0.1万字1个月前
双人复仇记 连载中
双人复仇记
灵芊瑞
0.8万字1个月前
涧春 连载中
涧春
五香瓜子仁
[已签约]一场让所有人匪夷所思的穿书,沐季珠以为的穿书,其实是夜渊一千两百年来的等待。
10.5万字4周前
暗黑十三星 连载中
暗黑十三星
夏咏初
蛇夫把她的脸按在地上摩擦,她原地发疯:“我既没杀你爸又没杀你妈,你凭什么杀我!”起因是星空破碎,蛇夫带着八十七个本体造反。无奈之下,天蝎坠落......
63.4万字4周前