数学联邦政治世界观
超小超大

【泛函分析】共鸣定理 (2-1)

定理1:(共鸣定理)设 {Tα} (α∈A) 是定义在巴拿赫空间 E 上而值域包含在赋范线性空间 E₁ 中的线性算子族,如果对每个 x∈E ,有

sup{||Tαx||}<∞,

α∈A

则{||Tαx||} (α∈A) 有界,或者说 {Tα} (α∈A) 一致有界。

这个结论是十分惊人的,比如{1,2,3,· · ·,n,· · ·} 中每个数是有限的,但是整个集合是无界集合,这样的例子十分常见,但是共鸣定理却一反常态,出人意料。

下面我们来看它的证明:

证明:任取一个指标 γ ∉ A ,令 A₁=A∪{γ} ,规定 Tᵧ=l 。在巴拿赫空间 E 上再定义一个范数:

||x||₁=sup||Tαx||=max(||x||,sup||Tαx||),x∈E,α∈A α∈A

由于||Tᵧx||=||x|| ,所以 ||x||₁ ≥ ||x||,又根据 sup {||Tαx||}<∞,

α∈A

我们有 ||x||₁<∞, || · || 显然满足 ||αx||₁=|α| ||x||₁ 以及 ||x||₁ ≥ 0 , ||x||₁=0 当且仅当 x∈θ 。现在证明它满足三角不等式:

||Tα(x+y)|| ≤ ||Tαx||+||Tαy|| ≤ sup ||Tαx||+sup||Tαy||=||x||₁+||y||₁. α∈A₁

α∈A₁

因此

||x+y||₁=sup||Tα(x+y)|| ≤ ||x||₁+||y||₁.

α∈A₁

现在证明X 按照 || · ||₁ 称为巴拿赫空间,事实上如果 {xₙ} 按 || · ||₁ 是基本点列,由于 || · || ≤ || · ||₁,所以{xₙ} 按 || · || 也是基本点列。因此有 x₀ ,使得 ||xₙ – x₀|| → 0.

现在我们证明{xₙ} 按|| · ||₁收敛于 x₀ :对任何 ϵ>0 ,必存在 N ,当 n,m ≥ N 时

ϵ

||xₙ – xₘ||<─,

2

ϵ

当α∈A₁ 时, ||Tα(xₙ – xₘ)||<─

2

令 m → ∞ 得到

ϵ

||Tα(xₙ – xₘ)|| ≤ ─.

2

所以当n ≥ N时

ϵ

||xₙ – x₀||₁ ≤ ─<ϵ

2

根据上次笔记中的推论,存在正数c ,使得 ||x||₁ ≤ c||x|| 对一切 x∈X 成立,也就是说 {||Tα||} (α∈A) 有界,其上界不超过 c 。

共鸣定理告诉我们,若{Tαx} (α∈A) 对每个 x∈E 有界,则与此“共鸣”,可以导出 {Tα} (α∈A) 一致有界,因此共鸣定理又称为一致有界原理(或 巴拿赫-斯坦因豪斯定理)。

作为共鸣定理理论上的应用,我们来研究算子列按强算子拓扑收敛的性质,我们分为三个问题来研究:

第一个问题:按强算子拓扑收敛的算子列是否一致有界?

第二个问题:算子列满足什么条件便按强算子拓扑收敛?

第三个问题:B(E,E₁) 关于算子列按强算子拓扑收敛是否完备?也就是说,若对每个 x∈E , {Tₙx} 是 E₁ 中的基本点列,是否存在 T∈B(E,E₁) ,使得 {Tₙ} 按强算子拓扑收敛于 T ?

先回答第一个及第二个问题:

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

情缘溺梦 连载中
情缘溺梦
岁岁于梦
1.2万字1年前
求生游戏:我的第六感超准 连载中
求生游戏:我的第六感超准
欢喜乔乔
【无烬次元】无烬的烈火熊熊燃烧全民求生是一款游戏,江淮霜等它公测却没想到它公测居然会覆盖地球,所有人被迫参与!活着就是这个游戏唯一的目标!开......
30.9万字1年前
至少会爱我吧 连载中
至少会爱我吧
赤烟
如果你说,你真的很喜欢我,我会相信,你说但是我放不下她,我也要相信。但是这样的话,你至少还是爱我的吧。只是比不过她。罢了借用哈利波特部分人物......
12.9万字1年前
重生之我在异世开店铺 连载中
重生之我在异世开店铺
墨香笔落
这个是我的脑洞,还有一些梦境,试试能不能写出来。
8.1万字1年前
穿成虐文女主后和神明HE了 连载中
穿成虐文女主后和神明HE了
一只猫咪爪爪
时千璃穿进一本被作者弃坑的虐文小说中。没想到一进来就是虐文小说中的经典场面,此时的男主面对绑匪,淡然说到“我选我妹妹。”再看看面前好看得不似......
4.5万字1年前
穿越之我在异世横行无阻 连载中
穿越之我在异世横行无阻
喵酱点点
重生这种不科学的事件居然会发生在自己身上想想真是好笑,曾经的暗杀之王,这一世居然是个小王子虽然体质废材,但是有一块儿小封地,倒也生活富足可为......
12.8万字1年前