数学联邦政治世界观
超小超大

霍奇猜想 (4-1)

英国数学家霍奇(William Vallance Douglas Hodge)于1950年提出的霍奇猜想,无疑是所有千禧难题中最难理解的。这是个高度专业的问题,只有极少数专业数学家才能真正地理解。下面是霍奇猜想:

一个非奇异射影代数簇上的每一个(一定类型的)调和微分形式都是代数闭链的上同调类的一个有理组合。

是不是发现,这个句子中的每一个专业术语你都不理解。在关于伯奇和斯温纳顿一戴尔猜想的文章中,我还可以把那个猜想与简单的几何联系起来,即三角形面积问题。

对于霍奇猜想,甚至想找些简单的类比都没有。霍奇猜想最清楚地说明了,现代数学的本质使它的大部分几乎不可能被普通人所领会。

一个世纪以来,数学家在旧的抽象上面建立了新的抽象,与其说数学家做出了新东西,不如说被考虑的对象变得更为抽象了。以霍奇猜想为例,微积分的运算在这里扮演了一个主要的角色,但是这个微积分不是像许多高中生所学到的那样在实数上进行,甚至也不在复数上进行。这是在更一般、更抽象的背景上进行的微积分。

对普通人来说,这个问题的难以理解正是它最有趣的地方。话虽如此,但我还是想试图解释一下霍奇猜想说的是什么。

整体的认识

17世纪,法国哲学家笛卡儿把几何代数化,把几何图形放在笛卡尔坐标系中,然后建立它们的数学方程。用代数来研究的几何通常称作代数几何,也叫笛卡儿几何。

19世纪期间,数学家将笛卡儿的方法向前推进了一步。他们不是只把代数当作一种工具,来研究几何对象,而是从代数方程着手,把这些方程的解定义为"几何"对象。但是大多数方程并不对应着我们熟悉的几何对象。因此称它们为"几何对象"是讲不通的。以这种方式,从代数方程产生的对象,数学家所给的名称是“代数簇”。

在定义代数簇时,数学家并不是仅考虑一个代数方程,而是一个方程组(有限个)。在由两个方程组成的方程组中,每一个方程定义了一个几何图形,那么由这个方程组定义的簇将是这两个图形的共有部分。)

因此,代数簇是几何对象的一种推广。任何一个几何对象都是一个代数簇,但是有许多代数簇是不可能被可视的。然而,并不因为某个特定的代数簇不可能被可视化,我们就无法研究它。

现在,我们可以看一下霍奇猜想中的一个专业术语∶一个非奇异射影代数簇,简单说,就是一个光滑的多维"曲面",它由一个代数方程的解所产生。这就像一个球面是通过解代数方程

x²+y²+z²=α²

而得到的一个光滑的二维曲面。

这个猜想针对那种“曲面”上的“调和微分形式”作出了一个断言。一个调和微分形式是某个十分重要的偏微分方程(称为拉普拉斯方程)的一个解,它既产生于物理学,也产生于复变函数的研究。

大学学习的微积分通常是在二维平面上。但是小小地努力一下,就可以把它推广到其他曲面上,例如球面上。再努力一下,就可以把微积分推广到各种各样更为一般的簇上。霍奇猜想涉及的是推广到一个非奇异射影代数簇上的微积分。它对某种类型的抽象对象作出了一个断言,我们把这种抽象对象称为H对象,如果我们从某种类型的簇着手并在其上做某种微积分,就会产生H对象。

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

星山凤之追梦少年 连载中
星山凤之追梦少年
徐睿雪
“我,叫火凤凰,是星际医院的院长。”“我叫火星娃,是火星的火星国王。”“我叫金王子,是星际公安局的局长。”“我叫火山凤,是火星的奥运会冠军。......
5.4万字9个月前
地下的救赎 连载中
地下的救赎
炽族族长炽星
本书含有许多炸裂内容,可能会引人不适,如果忍受不了请立刻退出更新贼慢,随缘更本书是屠星《漫逸的狂徒》姊妹篇
3.0万字9个月前
当哥哥们找回妹妹后 连载中
当哥哥们找回妹妹后
该用户已注销
〔已签约〕三月六日审核成功,未经过同意不许转载抄袭,违着必究。第一卷是表妹写的(懂得都懂)第二卷不是小学生剧情加文笔了!!!!!‘妹妹不听话......
13.2万字9个月前
千古玦尘上古重生 连载中
千古玦尘上古重生
乖乖女呀
假如上古重生到自己是后池,假如后池有记忆,知道自己就是上古,假如上古恢复本源之力,假如……
1.6万字9个月前
吉行一日 连载中
吉行一日
众生之上
后来啊,才发现我们原来早以成为了我们记忆中最平凡的模样……
0.9万字9个月前
十二星座的守护使命 连载中
十二星座的守护使命
小荔荔荔荔子暂退
“传言,十二星座有十二位守护者,他们勇敢、聪慧、强大,维持着宇宙的和平。好景不长,因为一次宇宙大战,他们掉入人间,守护石也不见踪影。因不属于......
2.4万字9个月前