数学联邦政治世界观
超小超大

Amann分析中recursion theorem的证明 (3-1)

目录

原命题 ▹

前置知识 ▹

命题的表述 ▹

命题的证明 ▹

免责声明:本文仅仅是展示如何在类型论 (Agda) 中证明原题所引用的命题, 而不构成对原题的回答, 毕竟, 原题可能是在集合论背景下的问题.

集合论里, 严格来讲只有演绎, 没有归纳, 因为归纳是公理的结果, 是需要先证明的. 但是类型论里, 消去规则就是归纳, 是内生的, 不需要被证明的.

原命题

5.11 Proposition Let X be a nonempty set and α ∈ X. For each n ∈ ℕ×,let Vₙ:Xⁿ → X be a function. Then there is a unique function f:ℕ → X with the following properties:

(i) f(0)=α.

(ii) f(n+1)=Vₙ₊₁(f(0),f(1),. . .,f(n)),n ∈ ℕ.

前置知识

我们知道什么是空类型⊥, 自然数类型 ℕ, 积类型 _×_ 以及相等类型 _≡_. 直接从标准库中导入这些内容.

{-# OPTIONS --safe #-}

open import Data.Empty

open import Data.Nat hiding (_^_)

open import duct

open import Relation.positionalEquality

open ≡-Reasoning

定义 给定集合 X 以及自然数 n,我们递归定义 Xⁿ 如下

X¹=X

Ⅹⁿ⁺²=Xⁿ⁺¹ × X

也就是说,Ⅹⁿ⁺¹=Xⁿ × X.∎

_^_ : (X : Set) (n : ℕ) → Set

X ^ 0 = ⊥

X ^ 1 = X

X ^ 2+ n = X ^ suc n × X

注意 X⁰没有定义, 形式化为空类型 ⊥.

定义 给定集合 X,函数 f:ℕ → X 以及自然数 n,递归定义 f〈· · ·〉n:Xⁿ⁺¹ 如下

f〈· · ·〉0=f(0) f〈· · ·〉(n+1)=〈f〈· · ·〉〉n,f(n+1)〉

也就是说,f〈· · ·〉n=〈f(0),f(1),. . .,f(n)〉.∎

_⟨⋯⟩_ : {X : Set} (f : ℕ → X) (n : ℕ) → X ^ suc n

f ⟨⋯⟩ zero = f 0

f ⟨⋯⟩ (suc n) = f ⟨⋯⟩ n , f (suc n)

命题的表述

再次贴出原命题. 我们只证其中的存在性,不证唯一性.

5.11 Proposition Let X be a nonempty set and α ∈ X. For each n ∈ ℕ×,let Vₙ:Xⁿ → X be a function. Then there is a unique function f:ℕ → X with the following properties:

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

我的10号男友 连载中
我的10号男友
亚兰Alain
3.3万字8个月前
狼人杀:这个女巫有点秀 连载中
狼人杀:这个女巫有点秀
素衣渡江
【已签约,首发话本,请勿搬运,违者必究。】【无限流,全员恶人】“生,还是死,这是一个问题。”“在这场游戏里不要轻易相信任何人,包括我。”雾音......
9.6万字8个月前
重生之我在异世开店铺 连载中
重生之我在异世开店铺
墨香笔落
这个是我的脑洞,还有一些梦境,试试能不能写出来。
8.1万字8个月前
临渊之界 连载中
临渊之界
仲商
名字还没有定好,之后想好了再改古言仙魔,这篇设定偏玛丽苏,第一次写此类型小说设定的世界观庞大,也挺套路的
13.7万字8个月前
超能小星探1 连载中
超能小星探1
风雪归来
恋爱科幻
0.7万字8个月前
侠樱之二十年后的我们 连载中
侠樱之二十年后的我们
樱i侠
主要是猪猪侠梦女,里面还有星航梦女,擎风梦女,自行避雷。讲的是猪猪侠他们二十岁时的生活,猪猪侠在二十岁遇到了他从小到大的好朋友,但在高中却分......
0.5万字8个月前