数学联邦政治世界观
超小超大

pikry forcing

设M是ZFC的可数传递模型,κ是M里的可测基数,D是κ上的normal measure。

我们构造一个力迫扩张M[G]使得基数还是基数,但κ的cofinal变成w。

定义P={(s,A)|s是κ的有限子集,A∈D},(s,A)≥(t,B)当且仅当(t,B)可以这样由(s,A)得到:把A里大于max(s)的一些元素添加进s里,然后删掉A里的一些元素。

对任意s,A,B,(s,A)与(s,B)是兼容的,所以P满足κ⁺-cc。所以大于κ的基数还是基数。

设s是κ的有限子集,σ是力迫语句。我们证明,存在A,使得(s,A)决定σ。

设s'是κ的有限子集。若存在X使得(s∪s',X)⊩σ,就给s'染上红色。若存在X使得(s∪s',X)⊩¬σ,就给s'染上蓝色。若(s∪s',X)对所有X无法决定σ,就给s'染上白色。

注意:显然不可能有s'同时涂红蓝。

由normal measure的性质,存在A使得对任意n,A的所有n元子集都是单色的。若(s,A)无法决定σ,则存在它的两个增强分别force σ和¬σ。设为(s∪s',X)和(s∪s'',Y)。不妨设|s'|=|s''|,X=Y。s'和s''都是A的子集,它们一红一蓝,与A的选取矛盾!

下面我们证明,κ在M[G]中的有界子集也是M的元素。由于两个序数的双射可以编码为它们乘积的子集,所以M中小于κ的基数在M[G]里还是基数。在M[G]里,κ是一列基数的极限,也是基数。

设λ<κ,X是λ的M[G]-子集。任取(s,A)∈G使得(s,A)⊩(X的名字是λ的子集),

对任何α<λ,我们增强(s,A)但不改变s,以确定(α∈X的名字)是否成立。经过λ次增强,A变小了λ次,可以取交,我们得到了一个条件使我们能确定X。

所以(s,A)⊩(X的名字∈Pᴹ(λ)),所以M[G]⊨X∈Pᴹ(λ)。

最后,我们证明在M[G]里cf(κ)=w。

G的所有元素的左分量可以组装成一个长度为w的序列s。

对任意α<κ,考虑P中的稠密集D={(s,A)|max(s)>α}。G与D相交。因此s里有大于α的元素。

因此s在κ里是无界的。

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

焕冥星之约 连载中
焕冥星之约
坠落的星海
(封面因为忘记改名字了,反应过来时,已经做好了,将就一下吧)宇宙中有88个星座,分别是:南天星座、北天星座和黄道星座(就是十二星座)其中北天......
0.4万字6个月前
纪与山言 连载中
纪与山言
芙呼芙噜
我的OC日常生活~
0.4万字6个月前
女配修仙之远世 连载中
女配修仙之远世
遇喜
(第一次正经写文,也不知道咋样,将就看看吧,辣眼睛的话那就抱歉啦)女配不想逆袭,只想快点下线但别人偏不让她如愿最终飞升的被迫营业的故事•ᴗ•
3.7万字5个月前
穿书之女配求生史 连载中
穿书之女配求生史
长木子琳
(已签约啦!)虽然不晓得标签是怎么弄的,但是……这本书不是恋爱文呦~各位亲~这本书没有主要男主的呐!还有点那啥向……就是那种性别只是用来区分......
11.5万字5个月前
All美:做精妹妹有点甜 连载中
All美:做精妹妹有点甜
桑绾檀
团宠作精小美儿
0.9万字5个月前
长生天师凌肖第三部 连载中
长生天师凌肖第三部
黄有文
故事简介:凌肖天师是宇宙洪荒廷生的女祸补天掉下的仙石受天地之灵气而生,虽然长生但仙气灵气受损时,要吸食死人以及坏人的血液补充自己的仙气以及灵......
1.4万字5个月前