设M是ZFC的可数传递模型,κ是M里的可测基数,D是κ上的normal measure。
我们构造一个力迫扩张M[G]使得基数还是基数,但κ的cofinal变成w。
定义P={(s,A)|s是κ的有限子集,A∈D},(s,A)≥(t,B)当且仅当(t,B)可以这样由(s,A)得到:把A里大于max(s)的一些元素添加进s里,然后删掉A里的一些元素。
对任意s,A,B,(s,A)与(s,B)是兼容的,所以P满足κ⁺-cc。所以大于κ的基数还是基数。
设s是κ的有限子集,σ是力迫语句。我们证明,存在A,使得(s,A)决定σ。
设s'是κ的有限子集。若存在X使得(s∪s',X)⊩σ,就给s'染上红色。若存在X使得(s∪s',X)⊩¬σ,就给s'染上蓝色。若(s∪s',X)对所有X无法决定σ,就给s'染上白色。
注意:显然不可能有s'同时涂红蓝。
由normal measure的性质,存在A使得对任意n,A的所有n元子集都是单色的。若(s,A)无法决定σ,则存在它的两个增强分别force σ和¬σ。设为(s∪s',X)和(s∪s'',Y)。不妨设|s'|=|s''|,X=Y。s'和s''都是A的子集,它们一红一蓝,与A的选取矛盾!
下面我们证明,κ在M[G]中的有界子集也是M的元素。由于两个序数的双射可以编码为它们乘积的子集,所以M中小于κ的基数在M[G]里还是基数。在M[G]里,κ是一列基数的极限,也是基数。
设λ<κ,X是λ的M[G]-子集。任取(s,A)∈G使得(s,A)⊩(X的名字是λ的子集),
对任何α<λ,我们增强(s,A)但不改变s,以确定(α∈X的名字)是否成立。经过λ次增强,A变小了λ次,可以取交,我们得到了一个条件使我们能确定X。
所以(s,A)⊩(X的名字∈Pᴹ(λ)),所以M[G]⊨X∈Pᴹ(λ)。
最后,我们证明在M[G]里cf(κ)=w。
G的所有元素的左分量可以组装成一个长度为w的序列s。
对任意α<κ,考虑P中的稠密集D={(s,A)|max(s)>α}。G与D相交。因此s里有大于α的元素。
因此s在κ里是无界的。
数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。