数学联邦政治世界观
超小超大

康托尔-伯恩斯坦定理 (2-1)

康托尔-伯恩斯坦定理(Cantor-Bernstein定理):设A和B是两个集合。如果从A到B有一个单射,并且从B到A也有一个单射,则A和B之间有一个一一映射。

换个表述也可以是:如果Cαrd(A) ≤ Cαrd(B)且 Cαrd(B) ≤ Cαrd(A),那么一定有 Cαrd(A)=Cαrd(B) 。

这两种表述无论哪种都是一看就说了句废话,这不是显而易见的吗?然而,它的证明并不显然。

先回顾下Card是什么。

对于有限集,我们把一个集合中包含的元素的个数称为这个集合的基数(cardinality)。

如果两个集合A 和 B 之间存在双射 f:A → B ,则称 A 与 B 是对等的,记作 A ~ B 。

两个对等的集合具有相同的基数。根据鸽笼原理/抽屉原则,对于有限集,一个集合不会与它的某一个真子集对等。但对于无限集合,结论不成立,因此需要从另一个角度理解基数的概念。

集合的基数是集合的固有特征,每一个集合都具有唯一的基数,对等的集合具有相同的基数。

我们通常把一个集合A的基数记作Card(A)。对于元素个数为n的集合,基数为n。但无限集合不宜简单地用∞ 表示,因为比如实数集的基数比自然数集的基数更大。

那么基数大小是怎么定义的呢:设A,B 两个集合,如果 A 与 B 的某个子集对等,则称 A 的基数不超过 B 的基数,记作 Cαrd(A) ≤ Cαrd(B) 。如果 Cαrd(A) ≤ Cαrd(B) 且 Cαrd ≠ Cαrd(B) ,则称A的基数小于B的基数,记作 Cαrd(A)<Cαrd(B) 。

那么回到了我们最初的问题,两种表述显然等价。对于实数α,b ,我们都知道如果 α ≤ b 且 b ≤ α ,则一定有 α=b ,但是换成集合的基数后,答案也是肯定的,但并不显然。证明如下。

Banach引理:设f:X → Y 和 g:Y → Ⅹ 都是映射,则存在分解

X=A∪∼A Y=B∪∼B

使得A∩∼A=∅ ,且 B∩∼B=∅。,且 f(A)=B g(∼B)=∼A。

证明:对于X的子集E,如果E∩g(Y\f(E))=∅

则称E是X中的分离集。记X中的分离集之全体为Γ ,则 Γ 非空,因为 ∅ 是X中的分离集,因此 Γ 至少含有 ∅ 这个元素。

现在令

A=∪E

E∈Γ

即A是集族Γ 中所有元素的并集,则 A∈Γ 。事实上,对任意 E∈Γ ,根据分离集的定义,E∩g(Y\f(E))=∅成立,又因为 A ⊇ E ,因此

E∩g(Y\f(A))=∅,

从而有

E∩g(Y\f(A))=∪[E∩g(Y\f(A))]=∅

E∈Γ

这就证明了A∈Γ 。此外,不难发现A是 Γ 中的最大元素,即X中的最大分离集。

现在令B=f(A),∼B=Y\B,∼A=g(∼B),则显然有

Y=B∪∼B B∩∼B=∅ A∪∼A=∅,

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

冷宫九公主要翻身 连载中
冷宫九公主要翻身
某家女主
因为不想弄这么多任务,所以就直接只有旁白仿炮灰闺女的生存方式
55.7万字4周前
宇宙沙盘 连载中
宇宙沙盘
96_03
情节纯属虚构,文笔不好请见谅。
0.7万字4周前
新生羽翼 连载中
新生羽翼
灵云星海
原创,撞设定致歉。是各种动物的拟人,讲的是各类种族之间的战争矛盾,有刀有甜营养均衡!…在提西墨大陆上…拥有三个种族翱翔于天空的飞鸟族......
0.2万字4周前
师尊请带我上天 连载中
师尊请带我上天
沐莘吖
一朵千年的莲花精,背负家族的使命替代苏家嫡女前往鹤山认传闻中法力无边,却清心寡欲的隐山神仙赵慕尘为师。刚上山时,苏锦儿认为他赵慕尘只不过是一......
15.8万字4周前
腹黑少主在线扮猪吃老虎 连载中
腹黑少主在线扮猪吃老虎
屏蔽_646313796
杀手组织的神秘杀手墨寒羽,是神秘世家的少家主,死后来到了一个神奇世界。自己魂穿在一个十一二岁的少女身上。她的第一个想法就是,不!想!再!死!......
4.3万字4周前
这个世界不太一样(无限流) 连载中
这个世界不太一样(无限流)
石头卷起来吧
妖族千年一遇的九尾猫妖寂稀星被拉进7384号星球,这里与他所生话的世界相差甚大,在这里有背叛,有丑恶,有绝望,有友情,还有爱。他一次又一次的......
5.5万字4周前