数学联邦政治世界观
超小超大

康托尔-伯恩斯坦定理 (2-1)

康托尔-伯恩斯坦定理(Cantor-Bernstein定理):设A和B是两个集合。如果从A到B有一个单射,并且从B到A也有一个单射,则A和B之间有一个一一映射。

换个表述也可以是:如果Cαrd(A) ≤ Cαrd(B)且 Cαrd(B) ≤ Cαrd(A),那么一定有 Cαrd(A)=Cαrd(B) 。

这两种表述无论哪种都是一看就说了句废话,这不是显而易见的吗?然而,它的证明并不显然。

先回顾下Card是什么。

对于有限集,我们把一个集合中包含的元素的个数称为这个集合的基数(cardinality)。

如果两个集合A 和 B 之间存在双射 f:A → B ,则称 A 与 B 是对等的,记作 A ~ B 。

两个对等的集合具有相同的基数。根据鸽笼原理/抽屉原则,对于有限集,一个集合不会与它的某一个真子集对等。但对于无限集合,结论不成立,因此需要从另一个角度理解基数的概念。

集合的基数是集合的固有特征,每一个集合都具有唯一的基数,对等的集合具有相同的基数。

我们通常把一个集合A的基数记作Card(A)。对于元素个数为n的集合,基数为n。但无限集合不宜简单地用∞ 表示,因为比如实数集的基数比自然数集的基数更大。

那么基数大小是怎么定义的呢:设A,B 两个集合,如果 A 与 B 的某个子集对等,则称 A 的基数不超过 B 的基数,记作 Cαrd(A) ≤ Cαrd(B) 。如果 Cαrd(A) ≤ Cαrd(B) 且 Cαrd ≠ Cαrd(B) ,则称A的基数小于B的基数,记作 Cαrd(A)<Cαrd(B) 。

那么回到了我们最初的问题,两种表述显然等价。对于实数α,b ,我们都知道如果 α ≤ b 且 b ≤ α ,则一定有 α=b ,但是换成集合的基数后,答案也是肯定的,但并不显然。证明如下。

Banach引理:设f:X → Y 和 g:Y → Ⅹ 都是映射,则存在分解

X=A∪∼A Y=B∪∼B

使得A∩∼A=∅ ,且 B∩∼B=∅。,且 f(A)=B g(∼B)=∼A。

证明:对于X的子集E,如果E∩g(Y\f(E))=∅

则称E是X中的分离集。记X中的分离集之全体为Γ ,则 Γ 非空,因为 ∅ 是X中的分离集,因此 Γ 至少含有 ∅ 这个元素。

现在令

A=∪E

E∈Γ

即A是集族Γ 中所有元素的并集,则 A∈Γ 。事实上,对任意 E∈Γ ,根据分离集的定义,E∩g(Y\f(E))=∅成立,又因为 A ⊇ E ,因此

E∩g(Y\f(A))=∅,

从而有

E∩g(Y\f(A))=∪[E∩g(Y\f(A))]=∅

E∈Γ

这就证明了A∈Γ 。此外,不难发现A是 Γ 中的最大元素,即X中的最大分离集。

现在令B=f(A),∼B=Y\B,∼A=g(∼B),则显然有

Y=B∪∼B B∩∼B=∅ A∪∼A=∅,

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

一本人看的小说 连载中
一本人看的小说
謝邀
0.2万字9个月前
花开花缘 连载中
花开花缘
美丽的阳光_179046271
千年前花仙子跟她的师妹同时爱让一个男人,为了那个男人她的师妹毒死了她,千年后她的转世再次归来,爱她的人依然在等着她,可身边美男太多,该选谁…......
36.9万字8个月前
快穿之老子被揍了 连载中
快穿之老子被揍了
冰诺茜希
1.7万字8个月前
黑化美羊羊复仇记…… 连载中
黑化美羊羊复仇记……
纯情小奶酪
新同学的到来把美羊羊给弄黑化了,接下来会发出什么呢?
0.3万字8个月前
X龙时代(漫画式) 连载中
X龙时代(漫画式)
蓝离殇灬字蓝霜
没什么简介,漫画来的,爱看看不看。我是把这个做给那些不能看这个漫画的小朋友们的
0.0万字8个月前
快穿我家宿主又A又撩 连载中
快穿我家宿主又A又撩
祭咕咕不是不羁祭
走过路过点开看看可好啊✔(//∇//)[喜欢]不喜欢可以左拐写文不易还请尊重作者谢谢暴躁小可爱×戏精帅上神1v1原创三观极正(大概是……吧?......
11.0万字8个月前