数学联邦政治世界观
超小超大

Kronecker定理 (2-1)

设ωᵢ ∈ ℂ (1 ≤ i ≤ n)为单位根, ξ=∑ωᵢ 。若 |ξ|=1,则 ξ 也是单位根。

让我一下子想起来代数数论上的习题:

ξ为一代数整数, ξ为单位根的充要条件是其所有共轭元素模为1。

充分性显然,证明必要性,设ξ 的极小多项式 f(x)=xⁿ+α₁xⁿ⁻¹+· · ·+αₙ ∈ ℤ[x],在 ℂ 上全部根是 ξ₁=ξ,ξ₂,· · ·,ξₙ

至少关于ξᵢ 的初等对称多项式应该都是整数,那利用牛顿公式它们的 k 次幂和也总是整数。

sₖ=∑ ξᵏᵢ ∈ ℤ,sₖ₊ₙ+α₁sₖ₊ₙ₋₁↓

ᵢ₌₁

+· · ·+αₙsₖ=0 ←

接下来注意到{sₖ} 是n阶线性递推,且 |sₖ| ≤ n ,然后就是典中典的一个结论,这样的递推一定是循环的。一般来说可以用抽屉原理去做,我偏不。

给定有限集合S , g:S → S 为单射,那么显然 g 等同于 S 上的一个置换。 Aut(S) 为有限群,那么一定存在 n 使得 gⁿ=idₛ 。一般的,如果 S 是无限集,但 x ∈ S 在 g 作用下生成的轨道 Oₓ 有限,那存在 n 使得gⁿ|ᴏₓ=idᴏₓ

这里取S=ℤⁿ,g(p₁,p₂,· · ·,pₙ)=(p₂,· · ·,pₙ,–α₁pₙ – · · · –αₙp₁) ( g 单,因为 αₙ ≠ 0 )

(s₀,s₁,· · ·,sₙ₋₁) 所在轨道是有限集合,故而存在T, gᵀ(s₀,s₁,· · ·,sₙ₋₁)=(s₀,s₁,· · ·,sₙ₋₁)=(sᴛ,sᴛ+1,· · ·,sᴛ₊ₙ₋₁)

∑ ξᵀᵢ=sᴛ=s₀=n ⇒ ξᵀᵢ=1

ᵢ₌₁

不难发现其实把所有共轭元素模长为1,换成不大于1也是对的。(我看到有人说这个加强的结论属于Kronecker,虽然我查不到,但也这样吧)

(Kronecker)ξ 为一非0代数整数, ξ 为单位根的充要条件是其所有共轭元素模不大于1。

那么有没有一个代数整数自己模长是1,但共轭元素模长不是1的呢?确实是有的,甚至有一类很特殊的数称为Salem数,这类数代数次数为2d,其中2d-2个共轭模长是1,但其它两个一个模长是大于1,一个模长小于1,且要互为倒数。

一个例子:

1 1

x²((x+─)²+2(x+─) – 2)=0

x x

1 1+√3

x+─=–1 ± √3 ⇒ x=─── ↓

x 2

√2√3 1 – √3 √2√3

± ─── or – ─── ± ─── i

2 2 2

回到北大夏令营那个题目的证明

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

三眼哮天录向日葵的微笑 连载中
三眼哮天录向日葵的微笑
百不离
杨戬的过去惨不忍睹,父母的抛弃。可当她们相聚时,看到的依然是冷漠。到底归属于光明还是黑暗呢?还是.......两种都不属于........(......
4.2万字11个月前
迷你特工队弗露:玫瑰的救赎 连载中
迷你特工队弗露:玫瑰的救赎
菲莉斯奥特曼
主要讲了露西通过训练逆袭还有了个爱她的男朋友的事
0.7万字11个月前
吾凰在上:转生成为郡主赤珠如何苟活? 连载中
吾凰在上:转生成为郡主赤珠如何苟活?
西班牙大姑妈
我把这种新文取名【反野文】,因为基本都是团宠和团厌文,或者是自带系统什么的,就是感觉看多了没啥意思了,所以想要自己新创建一种,这种既不是团厌......
2.8万字11个月前
辞柯落叶最知秋 连载中
辞柯落叶最知秋
未由
辞家主与阮先生的爱情故事(偏民国背景的架空文,军阀与戏子的小甜文~喜欢的宝子希望能关注一下哦~)我曾以为那夜的月光多是皎洁,却不想穆然回首,......
8.8万字11个月前
花落:雨染倾城 连载中
花落:雨染倾城
欣然听雨
《花落·雨染倾城》【沉醉】(已完结)身份揭晓,无意之间动心。“我大冒险输了而已。”只不过,大冒险的内容是,对喜欢的人表白。【清空】(已完结)......
7.4万字11个月前
吸血鬼殿下请恕罪 连载中
吸血鬼殿下请恕罪
柠檬香的沐璃
【年更,慎入】我可以给你一百朵关于蔷薇的回忆却没有勇气给你一束玫瑰♡吸血鬼殿下请恕罪❤灵感2019_开坑2019.9.12_沐璃执笔、封面。......
4.0万字11个月前