数学联邦政治世界观
超小超大

Kronecker定理 (2-1)

设ωᵢ ∈ ℂ (1 ≤ i ≤ n)为单位根, ξ=∑ωᵢ 。若 |ξ|=1,则 ξ 也是单位根。

让我一下子想起来代数数论上的习题:

ξ为一代数整数, ξ为单位根的充要条件是其所有共轭元素模为1。

充分性显然,证明必要性,设ξ 的极小多项式 f(x)=xⁿ+α₁xⁿ⁻¹+· · ·+αₙ ∈ ℤ[x],在 ℂ 上全部根是 ξ₁=ξ,ξ₂,· · ·,ξₙ

至少关于ξᵢ 的初等对称多项式应该都是整数,那利用牛顿公式它们的 k 次幂和也总是整数。

sₖ=∑ ξᵏᵢ ∈ ℤ,sₖ₊ₙ+α₁sₖ₊ₙ₋₁↓

ᵢ₌₁

+· · ·+αₙsₖ=0 ←

接下来注意到{sₖ} 是n阶线性递推,且 |sₖ| ≤ n ,然后就是典中典的一个结论,这样的递推一定是循环的。一般来说可以用抽屉原理去做,我偏不。

给定有限集合S , g:S → S 为单射,那么显然 g 等同于 S 上的一个置换。 Aut(S) 为有限群,那么一定存在 n 使得 gⁿ=idₛ 。一般的,如果 S 是无限集,但 x ∈ S 在 g 作用下生成的轨道 Oₓ 有限,那存在 n 使得gⁿ|ᴏₓ=idᴏₓ

这里取S=ℤⁿ,g(p₁,p₂,· · ·,pₙ)=(p₂,· · ·,pₙ,–α₁pₙ – · · · –αₙp₁) ( g 单,因为 αₙ ≠ 0 )

(s₀,s₁,· · ·,sₙ₋₁) 所在轨道是有限集合,故而存在T, gᵀ(s₀,s₁,· · ·,sₙ₋₁)=(s₀,s₁,· · ·,sₙ₋₁)=(sᴛ,sᴛ+1,· · ·,sᴛ₊ₙ₋₁)

∑ ξᵀᵢ=sᴛ=s₀=n ⇒ ξᵀᵢ=1

ᵢ₌₁

不难发现其实把所有共轭元素模长为1,换成不大于1也是对的。(我看到有人说这个加强的结论属于Kronecker,虽然我查不到,但也这样吧)

(Kronecker)ξ 为一非0代数整数, ξ 为单位根的充要条件是其所有共轭元素模不大于1。

那么有没有一个代数整数自己模长是1,但共轭元素模长不是1的呢?确实是有的,甚至有一类很特殊的数称为Salem数,这类数代数次数为2d,其中2d-2个共轭模长是1,但其它两个一个模长是大于1,一个模长小于1,且要互为倒数。

一个例子:

1 1

x²((x+─)²+2(x+─) – 2)=0

x x

1 1+√3

x+─=–1 ± √3 ⇒ x=─── ↓

x 2

√2√3 1 – √3 √2√3

± ─── or – ─── ± ─── i

2 2 2

回到北大夏令营那个题目的证明

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

赛罗的哥哥赛伊 连载中
赛罗的哥哥赛伊
塞少
赛伊被流放以后的故事,赛伊去过地球去过幻星(私设)遇到了师傅和师兄
2.1万字1年前
精神病的幻想世界 连载中
精神病的幻想世界
纪菫安
你是如何确定这个世界是真是假
0.3万字1年前
路途遥远,还好有你 连载中
路途遥远,还好有你
陈皮同志
还是安德&护卫,可以看作是《素食吸血鬼传》的一个延伸。安德=我护卫=我喜欢的女生(《茶啊二中——乘风破浪》里说过)
2.3万字1年前
神明法则:末世循环 连载中
神明法则:末世循环
小杏月呀
【双女主】末世来临,伴随着世界主角的死亡,世界不断重启,而辞月作为经历10次循环的重生者,在这一世绑定系统的她能否打破循环?不过,事情好像没......
11.2万字1年前
无敌(警匪) 连载中
无敌(警匪)
怡怡哦
沈弃儿陪着她的闺蜜陈如雪一起考入警校,毕业后,因优秀的成绩而在警署获得特殊待遇,沈弃儿还让伦子空一见钟情,那后来发生了什么呢?见书吧!
0.3万字1年前
妖精老公要拐我 连载中
妖精老公要拐我
小梁子
跑哪里去?先生,我们不认识没关系,交流交流就认识了一女n男糖分超高
13.2万字1年前