数学联邦政治世界观
超小超大

Kronecker定理 (2-1)

设ωᵢ ∈ ℂ (1 ≤ i ≤ n)为单位根, ξ=∑ωᵢ 。若 |ξ|=1,则 ξ 也是单位根。

让我一下子想起来代数数论上的习题:

ξ为一代数整数, ξ为单位根的充要条件是其所有共轭元素模为1。

充分性显然,证明必要性,设ξ 的极小多项式 f(x)=xⁿ+α₁xⁿ⁻¹+· · ·+αₙ ∈ ℤ[x],在 ℂ 上全部根是 ξ₁=ξ,ξ₂,· · ·,ξₙ

至少关于ξᵢ 的初等对称多项式应该都是整数,那利用牛顿公式它们的 k 次幂和也总是整数。

sₖ=∑ ξᵏᵢ ∈ ℤ,sₖ₊ₙ+α₁sₖ₊ₙ₋₁↓

ᵢ₌₁

+· · ·+αₙsₖ=0 ←

接下来注意到{sₖ} 是n阶线性递推,且 |sₖ| ≤ n ,然后就是典中典的一个结论,这样的递推一定是循环的。一般来说可以用抽屉原理去做,我偏不。

给定有限集合S , g:S → S 为单射,那么显然 g 等同于 S 上的一个置换。 Aut(S) 为有限群,那么一定存在 n 使得 gⁿ=idₛ 。一般的,如果 S 是无限集,但 x ∈ S 在 g 作用下生成的轨道 Oₓ 有限,那存在 n 使得gⁿ|ᴏₓ=idᴏₓ

这里取S=ℤⁿ,g(p₁,p₂,· · ·,pₙ)=(p₂,· · ·,pₙ,–α₁pₙ – · · · –αₙp₁) ( g 单,因为 αₙ ≠ 0 )

(s₀,s₁,· · ·,sₙ₋₁) 所在轨道是有限集合,故而存在T, gᵀ(s₀,s₁,· · ·,sₙ₋₁)=(s₀,s₁,· · ·,sₙ₋₁)=(sᴛ,sᴛ+1,· · ·,sᴛ₊ₙ₋₁)

∑ ξᵀᵢ=sᴛ=s₀=n ⇒ ξᵀᵢ=1

ᵢ₌₁

不难发现其实把所有共轭元素模长为1,换成不大于1也是对的。(我看到有人说这个加强的结论属于Kronecker,虽然我查不到,但也这样吧)

(Kronecker)ξ 为一非0代数整数, ξ 为单位根的充要条件是其所有共轭元素模不大于1。

那么有没有一个代数整数自己模长是1,但共轭元素模长不是1的呢?确实是有的,甚至有一类很特殊的数称为Salem数,这类数代数次数为2d,其中2d-2个共轭模长是1,但其它两个一个模长是大于1,一个模长小于1,且要互为倒数。

一个例子:

1 1

x²((x+─)²+2(x+─) – 2)=0

x x

1 1+√3

x+─=–1 ± √3 ⇒ x=─── ↓

x 2

√2√3 1 – √3 √2√3

± ─── or – ─── ± ─── i

2 2 2

回到北大夏令营那个题目的证明

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

茉莉方糕be文 连载中
茉莉方糕be文
泥嚎哈哈哈
莎头天下无敌
0.1万字4周前
深陷于光明沼泽 连载中
深陷于光明沼泽
困不活了
已完结——『地下诡秘实验室竟然和每一个成员都息息相关,他们仅是任务机器那么简单吗?隐藏在组织背后,又是什么新势力……』在那之前,陆沼泽独揽一......
37.3万字4周前
少年特战队之我在老地方等你 连载中
少年特战队之我在老地方等你
狙击手白鹰
落日篇“生命如同夕阳转瞬即逝”“夕阳西下,这是自然的规律。夕阳落下,你还能看到漫天的星辰啊”“…哈,是啊,还有星光点点…”星河篇“我们用命拼......
3.9万字4周前
她今天呆萌了吗 连载中
她今天呆萌了吗
吱吱123456
30.4万字4周前
虹猫蓝兔的幸福生活 连载中
虹猫蓝兔的幸福生活
蓝兔:暖暖于冰倩姬圣羽
hi,大家好。我的笔名:姬圣羽。真名:于冰倩。生日:1995.2.28。生肖:猪。血型:o。星座:双鱼。健康状况:特殊人。职业:微商。学历:......
1.7万字4周前
综穿之将军娱乐圈 连载中
综穿之将军娱乐圈
南宫墨风
原创:将军穿越娱乐圈完成每一个原主的愿望。
6.8万字4周前