If the Axiom of Choice can lead to such a counterintuitive result, should we just reject it? Mathematicians today say no, because it’s load-bearing for a lot of important results in mathematics. Fields like measure theory and functional analysis, which are crucial for statistics and physics, are built upon the Axiom of Choice. While it leads to some impractical results, it also leads to extremely practical ones.
如果选择公理带来的结果 如此地反直觉, 我们不应该否认它吗? 今天的数学家不这么认为, 因为它是数学中 许多重要成果的根基。 测度论和泛函分析等领域 对于统计学和物理学至关重要; 而它们都是建立在选择公理上的。 虽然选择公理能推理出 不切实际的结果, 但也能得到极其实用的结果。
Fortunately, just as Euclidean geometry exists alongside hyperbolic geometry, mathematics with the Axiom of Choice coexists with mathematics without it. The question for many mathematicians isn’t whether the Axiom of Choice, or for that matter any given axiom, is right or not, but whether it’s right for what you’re trying to do. The fate of the Banach-Tarski paradox lies in this choice.
幸运的是,就像欧几里得几何 与双曲几何共存一样, 使用选择公理和不使用它的数学 也是共存的。 对于许多数学家来说, 他们关注的并非这些公理的对错, 不论是选择公理还是其他公理, 重要的是它们是否能 为你的目标服务。 巴纳赫-塔斯基悖论的命运 正由这种选择决定。
数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。