One axiom common in modern mathematics is the Axiom of Choice. It typically comes into play in proofs that require choosing elements from sets— which we’ll grossly simplify to marbles in boxes. For our choices to be valid, they need to be consistent, meaning if we approach a box, choose a marble, and then go back in time and choose again, we'd know how to find the same marble. If we have a finite number of boxes, that’s easy. It’s even straightforward when there are infinite boxes if each contains a marble that’s readily distinguishable from the others. It’s when there are infinite boxes with indistinguishable marbles that we have trouble. But in these scenarios, the Axiom of Choice lets us summon a mysterious omniscient chooser that will always select the same marbles— without us having to know anything about how those choices are made. Our stab-happy mathematician, following Banach and Tarski’s proof, reaches a step in constructing the five sections where she has infinitely many boxes filled with indistinguishable parts. So she needs the Axiom of Choice to make their construction possible.
现代数学中常用的一个公理 是选择公理。 需要从集合中选择元素的证明中 通常会用到它—— 这种证明简单来说, 就好比盒装弹珠。 为了使我们的选择有效, 它们必须保持一致, 意味着若从其中一个盒子中 选择一颗弹珠, 然后回到过去、再次选择, 我们就会知道如何找到同一颗弹珠。 如果我们的盒子数量有限, 这便容易做到。 就算有无限个盒子也是小菜一碟, 只要盒中含有一颗 与其他弹珠不同的弹珠。 然而,当有无限个盒子, 且装的全是无法区分的弹珠时, 就会非常难办。 但是,在这种情况下, 选择公理就好比召唤了 一个无所不知的神秘选择者, 总是能选出相同的弹珠, 而无需我们知道 这些选择是如何做出的。 我们的疯狂数学家 效仿巴纳赫和塔尔斯基的证明, 走到了将五个部分重组的那一步, 她已在无限多的盒子中 装入了无法区分的小切片。 因此,她需要选择公理 才有可能将它们复原。
数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。