数学联邦政治世界观
超小超大

拓扑数学(二)

我举个比较初等的例子:素数有无限个的拓扑证明。这个是由Furstenberg给出的,并因为刊登在《数学天书中的证明》一书中而被广为人知。

对于α,b ∈ ℤ,b>0 ,定义 Nα,b={α+nb|n ∈ ℤ} ,对于集合 O ⊆ ℤ ,称 O 为开集,当且仅当 O=∅ 或对任意 α ∈ O ,存在 b ∈ ℕ₊ ,使得 Nα,b ⊆ O 。不难验证所有的开集 O 构成了 ℤ 上的一个拓扑,并且:

• 非空开集必是无限集

• 形如 Nα,b 的集合既是开集又是闭集

由于任何一个n ∈ ℤ – {1,–1} 均至少有一个素因子 p ,故 n ∈ N₀,ₚ ,因此 ℤ – {1,–1}=∪N₀,ₚ 。

p prime

如果只有有限个素数,则右边是闭集的有限并,因此为闭集,从而 {1,–1} 为开集,这与非空开集是无限集矛盾。所以素数有无限个。

这个证明最令我觉得惊艳的一点是,它利用整数环 ℤ 的代数结构构造出了一个拓扑结构,并以之证明素数的无限性。

事实上,Nα,b 就是形如 α+ℑ 的集合,其中 α ∈ ℤ 而 ℑ=(b) 是 ℤ 的一个非零理想。这意味着对于一般的非零环 R ,如果它的任意两个非零理想的交不是零理想,我们可以照猫画虎定义其上的一个拓扑 τ :它的一个基 B 是形如 r+ℑ ( r ∈ R , ℑ 是 R 的一个非零理想)的集合的搜集。这个 B 是一个拓扑基,是因为:

• 显然 R ∈ B ,所以对任意 r ∈ R ,存在 B ∈ B ,使得 r ∈ B

• 对任意 r ∈ (r₁+ℑ₁)∩(r₂+ℑ₂) ,有 r₁+ℑ₁=r+ℑ₁ 且 r₂+ℑ₂=r+ℑ₂ ,因此 r ∈ r+ℑ₁∩ℑ₂=(r+ℑ₁)∩(r+ℑ₂)=(r₁+ℑ₁)∩(r₂+ℑ₂) ,前面的条件保证了 ℑ₁∩ℑ₂ ≠ 0 ,因此 r+ℑ₁∩ℑ₂ ∈ B 。

至于这个拓扑有什么用处,似乎除了上面的证明素数无限性,用处并不大,甚至R 带上这个拓扑能否构成拓扑环似乎都是不一定的,这意味着它的性质实际上很差。

当然代数结构诱导拓扑结构的例子其实不在少数,例如交换环的谱的Zariski拓扑、完备化模或环的Krull拓扑等等。

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

重来一次会如何 连载中
重来一次会如何
鹤佳m
我是个普通在普通不过的女子,因为含恨死去,上天重新给了我开挂一样的人生。
3.3万字1年前
那些想做却又不敢做的事 连载中
那些想做却又不敢做的事
菜菜鸭hh
传闻中有一家豪门,有一位很抽象大小姐和很“惨”的大少爷,还有很宠爱大小姐的父母(前提前提前提,在看之前请把脑子寄存在此处,不喜欢误喷,谢谢!......
0.2万字1年前
盛世邪妃 连载中
盛世邪妃
红豆忆念
一扇石门将她吸入,竟意外来到下界,不但不能修炼,还被陷害破了相,废材?看清楚站在你面前的,可是上界神域的人上人,既然你受了这么多的年的委屈,......
0.7万字1年前
跨越诡道九重天 连载中
跨越诡道九重天
鱼青草
百里表示,只是约上好友,去异世界拿回眉毛而已,谁知意外连连,一路波折。明明带了一个好友,怎么到了异界莫名其妙多出一个?本来想好好旅个游,突然......
50.1万字1年前
异世武皇 连载中
异世武皇
萧子邪
在这个世界上,一个沉睡三千年的女子醒了过来。一个蓝星的少年来到了这个世界。他们将在这个世界书写怎么样的传奇境界化分:“武徒”“武者”“武师”......
9.0万字1年前
桃花源之源 连载中
桃花源之源
浅月盈梢
无意间堪得‘有字天书’一本,希望各位亲亲(宝_宝)♡,细细观摩多多评论。
14.5万字1年前