数学联邦政治世界观
超小超大

Hartogs number的一个引理

定义集合X 的Hartogs number ℵ(X) 为 min {α ∈ Ord:α ≰ X} 。可以在ZF下证明每个集合都有Hartogs number(hint:否则就会导致Burali-Forti's paradox)

Lemma:对于任意无穷集合X,Y , ℵ(XY)=ℵ(X) × ℵ(Y)

Proof:由于ℵ(X) × ℵ(Y) ≤ max{ℵ(X),ℵ(Y)} ≤ ℵ(XY),因此只用证明 ℵ(XY) ≤ ℵ(X) × ℵ(Y)。

任选 κ<ℵ(XY) 且 κ 是基数,则存在 A ⊂ X × Y 和双射 f:κ → A 。令 A₀=projₓ(A) ∧ A₁=projʏ(A),现在证明 A₀,A₁ 都可以良序化:定义 ψ:A₀ → A 使得 ψ(x)=min Aₓ<ᴀ ,其中 <ᴀ 是 A 上的良序且 Aₓ={(x,y)} ∈ X × Y:(x,y) ∈ A},不难证明 ψ 是单射,因此 A₀ 可被良序化,同理 A₁ 可被良序化。用 ψ,<ᴀ 诱导出的 A₀,A₁ 上的良序的基数 ≤ κ ,且必然在 A₀,A₁ 有一个的基数 ≥ κ ,不妨设 A₀ 的基数 ≥ κ ,则 ℵ(X)>κ ,因此 ℵ(XY) ≤ ℵ(X) × ℵ(Y) ,lemma成立。 ⊣

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

烟岁 连载中
烟岁
泱凌
“烟花易冷,岁月无声”少女会经历怎样的冒险呢?……
1.9万字9个月前
梦之国——鬼兔 连载中
梦之国——鬼兔
逝桉
0.1万字9个月前
TOP登陆少年:蝶恋 连载中
TOP登陆少年:蝶恋
予荷H
*幻世界*BE预警*TOP全员*想法大爆发一些穿插了各种元素的超绝小说(BE)喜欢的来#风之神—朱志鑫#顶流男歌手—张泽禹#雪之神—张极#克......
0.3万字8个月前
希腊神话……月桂少女 连载中
希腊神话……月桂少女
糖瓜罐里的星星
我穿越成为了希腊神话中的达芙妮,就是为了躲避阿波罗追求变为月桂树的那个人,为了逃离变成月桂树的结局我每日在深山老林就是为了防止某一天变成一棵......
0.4万字8个月前
修仙1袭之旅 连载中
修仙1袭之旅
染尘_667805112
顶级修仙世家蓝家长房长女,惨死在其堂妹蓝茵凝手中,死前才知道蓝家没落更是因为她蓝茵凝,联合外人对付蓝家,重活一世,她一定要保住蓝家,要蓝茵凝......
11.0万字8个月前
快穿拯救黑化boss反派 连载中
快穿拯救黑化boss反派
君兮之
別名,反派总想和我谈恋爱】全家被灭,被自己最好的朋友背叛,被自己最爱的你全家被灭,还有什么比这更伤心的事情吗?当她悲痛欲绝时,系统来了说想报......
3.1万字8个月前