数学联邦政治世界观
超小超大

集合论和逻辑(Munkres拓扑) (12-2)

函数: 函数 f 是一个指派法则 r ,连通一个包含 r 的像集的集合 B 。法则 r 的定义域 A ,称为 f 的定义域。 r 的像集就称为 f 的像集。集合 B 就称为 f 的陪域(codomain), 很多书籍并没有给出这个集合的名称,它一般包含值域。

对于函数f:A → B , 可以读作" f 是从集合 A 到集合 B 的函数",或者" f 是从 A 到 B 的映射",或者简单的说" f 映射 A 到 B "。有些时候,人们把 f 形象的看成是将 A 中的点自然地带到(carry to) B 中的点的几何变换。

对于f:A → B,α ∈ A,用 f(α) 表示法则 f 确定赋值给 α 的 B 中的唯一元素,称之为 f 在 α 的值,或者说是 α 在 f 下的像。正式的说,如果 r 是函数 f 的法则, f(α) 就是使得 (α,f(α)) ∈ r 的 B 的那个唯一的元素。

使用这种表示法,可以把前面所有的函数表达的更加严谨。

限制映射(restriction of f):如果 f:A → B,A₀ ⊂ A,定义 f 的限制到 A₀ 为函数将 A₀ 映射到 B ,它的法则是:{(α,f(α))|α ∈ A₀}

表示为f|ᴀ₀ ,读作 f 被限制到 A₀ 。

复合映射(composite):给定 f:A → B,g:B → C,

定义复合映射g◦f 为 g◦f:A → C ,定义为 g◦f(α)=g(f(α)) 。

正式的说,g◦f:A → C 是规则如下的函数: {(α,c)|for some b ∈ B,f(α)=b,g(b)=c}

f g

α f(α)=b cg(f(α))=g(b)=c

A f(α)

B C

单射(one-to-one, injective):[f(α)=f(α')] ⇒ [α=α'],只依赖对应法则。

满射(onto, surjective):[b∈B] ⇒ [∃ α ∈ A:b=f(α)],除了对应法则,还依赖于陪域(值域)。

双射(bijective, one-to-one correspondence): 同时单射和满射。

两个单射的复合还是单射;两个双射的复合还是双射。

如果f 为双射,则存在一个 B → A 的映射称为 f 的逆,记做 f⁻¹ ,同时它也是双射。!

引理2.1: 设 f:A → B,

若存在g:B → A,h:B → A,s.t.∀ α ∈ A:g(f(α))=α,∀ b ∈ B:f(h(b))=b,则 f 为双射,且有 g=h=f⁻¹ 。

像集(image):设 f:A → B,A₀ ⊂ A,

f(A₀)={b|∃ α ∈ A₀:b=f(α)}

称为A₀ 在 f 下的像。

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

天黑之前别散场 连载中
天黑之前别散场
寐至秋雨
绝症的孩子在濒临死亡的瞬间看见人类的世界将与另一个世界重叠,怜悯的使者延长她们的寿命让他们尽所能为人类清除障碍遗忘是陷入迷茫的最后计划不会带......
0.2万字8个月前
终极之战:小马们的面具危机 连载中
终极之战:小马们的面具危机
至尊之王克雷尔
死亡,战争,黑暗充斥着整个世界观,而希望,也终将降临
7.6万字8个月前
枕上书续写(东华凤九) 连载中
枕上书续写(东华凤九)
一堆乱码iosty
凤九:我白凤九无论如何都要把东华拉入十丈红尘东华:三生三世枕上书,这只小狐狸终究是我的
1.2万字8个月前
捡只狐仙做男友 连载中
捡只狐仙做男友
鹿曦沐_XM
捡到一只小狐狸,怎么办?在线等,挺急的……
6.9万字8个月前
宿主是社会主义接班人 连载中
宿主是社会主义接班人
柰椋
好吧,我还是不太喜欢写长篇,所以更文,就比较慢吧,还有就女主是那种,对闷骚吧,表面很温暖那种,内心戏比较多,面对男主,比较强势,当然是后面,......
5.9万字8个月前
莉迪娅不是你的玩物 连载中
莉迪娅不是你的玩物
洛秦
【暴躁腹黑少爷】x【温柔知性少女】“错在,你就是个玩物。”她帮了所有人,人们含笑接受帮助,却从不给予回报,但她也不求。她不是带着“女强人”面......
6.1万字8个月前