数学联邦政治世界观
超小超大

实数理论 (8-7)

(1)[αₙ₊₁,bₙ₊₁] ⊆ [αₙ,bₙ],n=1,2,3,· · ·;

(2)lim (bₙ – αₙ)=0

n→∞

于是,对于任意ε>0 ,存在正整数 N ,当 n>N 时,有 |bₙ – αₙ|<ε ,此时对于任意的 m>n>N ,有 αₙ ≤ αₘ ≤ bₘ ≤ bₙ ,此时有 |αₙ – αₘ| ≤ |bₙ – αₙ|<ε,|bₙ – bₘ| ≤ |bₙ – αₙ|<ε

由柯西收敛原理知道 {αₙ},{bₙ} 都收敛. 又由于 lim(bₙ – αₙ)=0 ,故存在实数 ξ 满足 n→∞

lim αₙ=lim bₙ=ξ ∈ [αₖ,bₖ],(k=1,2,3,· · ·)

n→∞ n→∞

2.5 闭区间套定理 ⇒ 有限覆盖定理 ⇒ 致密性原理

闭区间套定理 ⇒有限覆盖定理

设S=[α,b],开区间集 J 覆盖 S . 假设 [α,b] 不能被 J 中有限个区间覆盖,我们把 [α,b] 分为两个区间

α+b α+b

[α,───],[───,b],

2 2

其中至少有一个不能被 J 中有限个区间覆盖,记为 [α₁,b₁] .以此类推分下去得到一列闭区间 {[αₙ,bₙ]} ,其中每一个 [αₙ,bₙ] 都不能被 J 中有限个开区间覆盖,并且满足

(1)[αₙ₊₁,bₙ₊₁] ⊆ [αₙ,bₙ],n=1,2,3,· · ·;

(2)lim (bₙ – αₙ)=0 .

n→∞

由闭区间套定理知道存在ξ 使得:

lim αₙ=lim bₙ=ξ ∈ [αₖ,bₖ],(k – 1,2,3,· · ·)

又由于 J 覆盖 [α,b] ,故在 J 中必然有一个开区间 (α,β) 使得 ξ ∈ (α,β) .

从而存在N ,对 n>N 有 α<αₙ<bₙ<β

即 [αₙ,bₙ] ⊆ (α,β) ,从而 [αₙ,bₙ] 可以被 J 中一个区间覆盖,矛盾. 故得证.

有限覆盖定理 ⇒ 致密性原理

设{xₙ} 是一个有界数列,即有实数 α,b 使 α ≤ x ≤ b(n ∈ ℕ*)

假设对于任意ξ ∈ [α,b] ,都有 εξ>0 ,使在领域 (ξ – εξ,ξ+εξ) 中只含有 {xₙ} 的有限项,于是我们得到一个开区间集

J= {(ξ – εξ,ξ+εξ)|ξ ∈ [α,b]}

显然 J 是 [α,b] 的一个开覆盖,从而存在一个有限子覆盖

J₁= {(ξ₁ – εξ₁,ξ₁+εξ₁),· · ·,(ξₘ – εξₘ,ξₘ+εξₘ)}

从而由 εξ 的选取知道,对于 i=1,2,· · ·,m ,在开区间 (ξᵢ – εξᵢ,ξᵢ+εξᵢ) 中只含有有限个 xₙ 中的项,从而存在正整数 Nᵢ ,满足对任意 n>Nᵢ ,有 xₙ ∉ (ξᵢ – εξᵢ,ξᵢ+εξᵢ) .

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

快穿:狐狸有点脚滑 连载中
快穿:狐狸有点脚滑
萧淑不淑怡
杨欣然原来是人,不过在一次意外,遇到了系统,跟他做了很久的交易,交易结束后,又开启了新的生活,还转生成了狐狸,可惜新身体才用了几百年就噶了。......
0.5万字6个月前
我是卡皮巴拉 连载中
我是卡皮巴拉
颜释怀
我是卡皮巴拉,一只单纯的水豚。有一天,我一觉醒来发现自己有新的身体了。所以亲,我叫卡豚,请你记住!(发疯作品……,你敢看,我敢更;你不看,我......
0.0万字6个月前
迎泽 连载中
迎泽
祁崽哭唧唧
余晖在云层中求救,太阳终于被淹死了。——《落不下》生不由己,不如不生。他说他不想要情爱,他只想要骨血里的山河。
2.0万字6个月前
八叉 连载中
八叉
银杏爱精致
0.3万字6个月前
原来废材是妖孽 连载中
原来废材是妖孽
丹青奇迹小说家
一朝穿越,她成了人人谩骂,惨遭唾弃的废物。真是天堂有路你不走,地狱无门你偏行!敢骂堂堂王牌杀手是废物,找死!“废物?啊哈哈哈——”她仰天蔑笑......
61.9万字5个月前
我的小尾巴2:我的好弟弟 连载中
我的小尾巴2:我的好弟弟
小熊二二
(暂时因为要开别的文所以暂时不会更)就是说,一个治愈文,处女座啦,可能会有点扯,因为是我突然在脑子里的小剧情(本人水瓶的剧情奇怪可能会蛮正常......
0.9万字5个月前