伽罗瓦在原文中指出:“由于涉及的(根)之间的初始位置不产生影响,我们考察的群中,不管选择哪项作为起始排列,总能找到相同的变换。于是,如果群中有变换S和T,则该群中必定包含变换ST。(As the concern is always with questions where the original disposition of the letters has no influence, in the groups that we will consider one must have the same substitutions whichever permutation it is from which one starts. Therefore, if in such a group one has substitutions S and T , one is sure to have the substitution ST .)”
伽罗瓦在注释中再次强调:“显然,这里讨论的排列组中,关于代表根的字母的排列方式根本无关紧要,重要的是这些字母的之间的变换,通过这种变换,我们可以从一种排列变换成另一种排列。因此,起始排列可以任意给出,然后其他排列总是可以通过相同的变换推导出来。以这种方式形成的新排列组显然与原始的排列组具有相同的性质,因为在前面的定理中,除了在函数中可能进行的代表根的字母变换外,其他都不重要。(It is clear that in the group of permutations which is discussed here, the disposition of the letters is not at all relevant, but only the substitutions of letters by which one passes from one permutation to another. Thus a first permutation may be given arbitrarily, and then the other substitutions permutations may always be deduced by the same substitutions of letters. The new group formed in this way will evidently enjoy the same properties as the first, because in the preceding theorem, nothing matters other than substitutions of letters that one may make in the functions.)”
下面来证明一下排列组(I)和排列组(II)代表方程P(x)=0的根之间的变换组包含相同的变换。
显然,存在域F上的多项式Q(x),使得W=Q(V)。
由于Φ₁(V),. . .,Φₘ(V) 和 Ψ₁(Wⱼ),Ψ₂(W),. . .,Ψₘ(W) 都是方程P(x)=0的一组根的排列,因此对于任意 Φₖ(V) 1 ≤ k ≤ n,必定存在 l,1 ≤ l ≤ n ,满足 Φₖ(V)=Ψₗ(W) 。
因此,Φₖ(V)=Ψₗ(W)=Ψₗ(Q(V))
根据引理1,有 Φₖ(Vᵢ)=Ψₗ(Q(Vᵢ)) i=1,. . .,n。
数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。