数学联邦政治世界观
超小超大

拓扑数学(一) (3-1)

The Baire space(Logician's reals)上的拓扑

随便问一个set theorist"什么是实数", 他/她很有可能会半开玩笑地告诉你: "一个实数就是一个自然数到自然数的函数f:ω → ω". 在集合论文献中, 这的确是"real"一词最常见的指代. 集合论中经常会出现的"Cohen real", "random real", "a real coding a well-founded model of ZFC"等说法, 都是取的上文意义上的"实数". 描述集合论常见的介绍语"研究实数的可定义子集"取的也是这个意思. 这篇文章将会介绍这个意义上的“实数”: the Baire Space, 又称Logician's Reals.

定义: 将自然数集{0,1,2,3,. . .}写作ω,则所有从ω到ω的函数集ωω={f│f:ω → ω}被称为the Baire space. 自然数的有限序列我们写作<ωω={f│(∃n)(f:n → ω)}

正常来说, 我们把一个这样的函数看作一个长度为ω的自然数序列(f(0),f(1),f(2),f(3). . .). 在此之上, 我们将ωω可视化为一种树的结构:

每一个实数f:ω → ω都对应着这个树上的一个(infinite) branch. 例如下图中红色的branch就是一个实数(的一部分):

不难看出, 这棵树上的每一个点都对应着一个有穷的自然数序列s=(s₁,s₂,s₃,. . .,sₙ). 给定一个长度为n有穷序列 s∈<ωω,我们可以考虑由这个点开始向下延展的cone Uₛ={f ∈ ωω│f ⨡ n=s}. 如下图蓝色部分所示:

我们关心形如Uₛ的这些cones, 是因为我们可以拿它们当作basic open sets来得到一个Baire space上的拓扑. 我们将会证明这个ωω在这个拓扑下同胚(homeomorphic)于无理数. 这个事实也给Baire space的别称"Logician's reals"提供了技术上的支持.

定义: 在ωω上定义一个拓扑: 对于任意的<ωω,我们令Uₛ={f ∈ ωω│f ⨡ n=s}为basic open sets. 我们也可以在ωω上定义一个complete metric (虽然我们不会讨论这个metric):

0 if f=g

d(f,g)={ 1

── if f ⨡n=g ⨡ n but f(n) ≠ g(n)

n+1

之所以提及这样一个complete metric, 是因为如下事实: 根据Baire纲定理(Baire category theorem), 我们定义的the Baire space是一个Baire space (lol...)

我们留意到: 每一个basic open set Uₛ 的补集就是与它相交为空的其它basic open sets的并集: Uₛ=ωω ∖ ∪{Uₜ│Uₜ∩Uₛ=∅}. 所以这个拓扑有一个clopen basis.

于此同时, 这个拓扑有一个更简单的刻画(虽然没有那么容易可视化): 给自然数集ω赋予discrete topology, 然后再考虑ω份ω的product ∏ω.

i∈ω

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

硁硁之信 连载中
硁硁之信
斑蓝
好吃懒做的傻子Vs矝贵恶劣大聪明。睡眠之神Vs小爱神有副cp
0.2万字8个月前
噩梦苏醒时分 连载中
噩梦苏醒时分
157***351_2137603610
怪物!怪物!男孩不住的哭喊着,然而,没有一个人搭理他。突然,黑夜里,一双黄色的眼睛转了过来,一股劲风携杂着血腥味像男孩扑去。
3.8万字8个月前
无轶 连载中
无轶
墨熙妍
新坑,算副更作品本品故事纯属虚构,如有雷同实属巧合当中的危险动作场景请勿在现实模仿(感觉好数据化啊哈哈哈哈)总之不打算直接透露,求评论求点赞......
17.2万字8个月前
为所欲为(快穿) 连载中
为所欲为(快穿)
凌云生
简介正在更新
0.4万字8个月前
月老她是个小作精 连载中
月老她是个小作精
李朵儿
(已签约/已完结)看作天作地的月老到了兽世如何虐的兽人们又爱又恨。温柔的虎兽是那个她说什么就是什么的舔狗司命星君?而且他如今正在历情劫?好的......
23.0万字8个月前
轮回之角色扮演者 连载中
轮回之角色扮演者
病娇女王懒癌晚期
【原创女频】+【军旅】+【特种兵】+【女强】+【无限流】世界一:《爱上橄榄绿》第6章已修,其余章节未修
4.1万字8个月前