数学联邦政治世界观
超小超大

泛函分析知识体系梳理 (2-1)

首先,泛函分析可以分为两部分——线性泛函分析与非线性泛函分析。非线性泛函分析创立在线性泛函分析之后,也以线性泛函分析为基础。

线性泛函分析一般可以分成两部分——线性拓扑空间、线性算子

线性拓扑空间

线性泛函分析研究(无限维)线性空间上的线性算子,需要研究它们的各种收敛性,所以需要赋予线性空间拓扑结构,这就引出了线性拓扑空间。

泛函分析中在线性空间中引入拓扑最基本的方法是引入度量,因为在一般的拓扑空间中,序列的收敛会失去一些重要性质(极限的唯一性等,在Hausdorff空间中序列才不会收敛到两个及以上点),而在度量空间中,这些性质得以保留;

比度量空间性质更好的是赋范线性空间,在线性空间中引入范数就构成赋范线性空间,其中,完备的(无限维)赋范线性空间被称为Banach空间;研究中有时候会在空间中引入乘法,构成线性代数(并非学科的名称,而是一个具体的概念),对应于banach空间的即banach代数。

在线性空间中引进内积即可构成欧几里得空间,由于内积可构造范数,故欧几里得空间都是赋范线性空间,并且是一类比赋范线性空间性质更好的空间。而完备的(无限维)欧几里得空间被称为Hilbert空间,也就是范数是由内积构造的Banach空间。

p.s. 一开始我以为赋范线性空间和欧几里得空间是两类不同的空间。。。

在欧几里得空间中,可以利用其标准正交基(φ₁,φ₂,· · ·,φₙ) 用内积表示元素 x ,也就是展开为级数

x=∑ cₖφₖ;

ₖ₌₁

而在无限维欧几里得空间中,这个展开式变为 x=∑ cₖφₖ ,被称为 x 的Fourier级数。 ₖ

在完备的度量空间上,有一重要定理:Baire category theorem,其实它更多的是一个拓扑学中的定理,但似乎很少有拓扑学教材会讲,我只在J. Lee的书里见过。

在线性拓扑空间的各种拓扑性质中,可数性(countability)、可分性(separability)和紧性(compactness)都是比较重要的性质,其中最重要的性质是紧性,因其能将许多性质从有限维情形推广到无限维情形。[1]

线性算子

两个线性拓扑空间之间的线性映射被称为线性算子(linear operator),其中将线性空间映到数域的线性算子被称为线性泛函(linear functional),线性空间上的所有线性泛函组成的集合被称为对偶空间(dual space)。注意:线性泛函的概念并不确定,不同的书会将不同的算子称为泛函,但对偶空间的概念是确定无异议的。

关于线性算子的延拓,有重要的Hahn-Banach theorem,它有一个集合解释:凸集分解。我看过的每本泛函分析教材都会强调这个定理的重要性,例如:

It deal with the extension of linear functionals.[2]

The most important theorem about the structure of linear continuous functionals on normed spaces.[3]

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

闲着没事的日常生活 连载中
闲着没事的日常生活
迟九闻书
日常生活
2.2万字4周前
谁家师傅在墙角翻跟头啊 连载中
谁家师傅在墙角翻跟头啊
漫游的水母
简介正在更新
1.2万字4周前
快穿之恶女攻略 连载中
快穿之恶女攻略
许青山
一切在活命面前都不值一提。心机女主,有点脑的苏文在花音生命即将结束时遇见一个名为系统的东西,从此便开始了她温柔(婊气)的攻略之旅。她是最温柔......
20.2万字4周前
轩顾往昔,忆雨梦汐 连载中
轩顾往昔,忆雨梦汐
欣落梦雨
那年的雨让我们相遇了,你希望我向太阳一样温柔,正因为如此,所以我叫——雨汐你就像我的太阳,照亮我前进的道路,一直陪伴着我,从未离开-蓝轩宇
3.1万字4周前
浮梦一生只爱一人 连载中
浮梦一生只爱一人
脉言
原本以为自己是手握莲花只想天下的人永远记住自己的传说可最后才发现原来自己也只是一颗棋子,在命运的齿轮中最终也只是做了一场空了什么一生只爱一人......
1.0万字4周前
异世药香 连载中
异世药香
abc安琪拉
花云溪,出生医学世家,却没想到被老爸的外室给坑了,从此开启了一段神奇的旅程……
31.1万字4周前